enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cylinder - Wikipedia

    en.wikipedia.org/wiki/Cylinder

    A cylinder of revolution is a right circular cylinder. The height of a cylinder of revolution is the length of the generating line segment. The line that the segment is revolved about is called the axis of the cylinder and it passes through the centers of the two bases. A right circular cylinder with radius r and height h

  3. Right circular cylinder - Wikipedia

    en.wikipedia.org/wiki/Right_circular_cylinder

    The area of the base of a cylinder is the area of a circle (in this case we define that the circle has a radius with measure ): B = π r 2 {\displaystyle B=\pi r^{2}} . To calculate the total area of a right circular cylinder, you simply add the lateral area to the area of the two bases:

  4. List of centroids - Wikipedia

    en.wikipedia.org/wiki/List_of_centroids

    Quarter-circular area [2] ... the volume and the centroid coordinates ... r = the radius of the cylinder h = the height of the cylinder ...

  5. On the Sphere and Cylinder - Wikipedia

    en.wikipedia.org/wiki/On_the_Sphere_and_Cylinder

    The ratio of the volume of a sphere to the volume of its circumscribed cylinder is 2:3, as was determined by Archimedes. The principal formulae derived in On the Sphere and Cylinder are those mentioned above: the surface area of the sphere, the volume of the contained ball, and surface area and volume of the cylinder.

  6. Hydraulic diameter - Wikipedia

    en.wikipedia.org/wiki/Hydraulic_diameter

    A is the cross-sectional area of the flow, P is the wetted perimeter of the cross-section. More intuitively, the hydraulic diameter can be understood as a function of the hydraulic radius R H, which is defined as the cross-sectional area of the channel divided by the wetted perimeter. Here, the wetted perimeter includes all surfaces acted upon ...

  7. Area - Wikipedia

    en.wikipedia.org/wiki/Area

    Archimedes showed that the surface area of a sphere is exactly four times the area of a flat disk of the same radius, and the volume enclosed by the sphere is exactly 2/3 of the volume of a cylinder of the same height and radius. Most basic formulas for surface area can be obtained by cutting surfaces and flattening them out (see: developable ...

  8. Surface-area-to-volume ratio - Wikipedia

    en.wikipedia.org/wiki/Surface-area-to-volume_ratio

    The surface-area-to-volume ratio has physical dimension inverse length (L −1) and is therefore expressed in units of inverse metre (m-1) or its prefixed unit multiples and submultiples. As an example, a cube with sides of length 1 cm will have a surface area of 6 cm 2 and a volume of 1 cm 3. The surface to volume ratio for this cube is thus

  9. Method of exhaustion - Wikipedia

    en.wikipedia.org/wiki/Method_of_exhaustion

    Proposition 10: The volume of a cone is a third of the volume of the corresponding cylinder which has the same base and height. [5] Proposition 11: The volume of a cone (or cylinder) of the same height is proportional to the area of the base. [6] Proposition 12: The volume of a cone (or cylinder) that is similar to another is proportional to ...