enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fourth power - Wikipedia

    en.wikipedia.org/wiki/Fourth_power

    n 4 = n × n × n × n. Fourth powers are also formed by multiplying a number by its cube. Furthermore, they are squares of squares. Some people refer to n 4 as n “tesseracted”, “hypercubed”, “zenzizenzic”, “biquadrate” or “supercubed” instead of “to the power of 4”.

  3. 1024 (number) - Wikipedia

    en.wikipedia.org/wiki/1024_(number)

    The number 1024 in a treatise on binary numbers by Leibniz (1697) 1024 is the natural number following 1023 and preceding 1025. 1024 is a power of two: 2 10 (2 to the tenth power). [1] It is the nearest power of two from decimal 1000 and senary 10000 6 (decimal 1296). It is the 64th quarter square. [2] [3]

  4. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...

  5. nth root - Wikipedia

    en.wikipedia.org/wiki/Nth_root

    A square root of a number x is a number r which, when squared, becomes x: =. Every positive real number has two square roots, one positive and one negative. For example, the two square roots of 25 are 5 and −5. The positive square root is also known as the principal square root, and is denoted with a radical sign:

  6. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    The unique primitive square root of unity is ; the primitive fourth roots of unity are and . The n th roots of unity allow expressing all n th roots of a complex number z as the n products of a given n th roots of z with a n th root of unity.

  7. Square root - Wikipedia

    en.wikipedia.org/wiki/Square_root

    The square root of a positive integer is the product of the roots of its prime factors, because the square root of a product is the product of the square roots of the factors. Since p 2 k = p k , {\textstyle {\sqrt {p^{2k}}}=p^{k},} only roots of those primes having an odd power in the factorization are necessary.

  8. Napier's bones - Wikipedia

    en.wikipedia.org/wiki/Napier's_bones

    Like before, 8 is appended to get the next digit of the square root and the value of the eighth row, 1024, is subtracted from the current remainder, 1078, to get 54. The second column of the eighth row on the square root bone, 16, is read and the number is set on the board as follows. The current number on the board is 12.

  9. Radical symbol - Wikipedia

    en.wikipedia.org/wiki/Radical_symbol

    The two square roots of a negative number are both imaginary numbers, and the square root symbol refers to the principal square root, the one with a positive imaginary part. For the definition of the principal square root of other complex numbers, see Square root § Principal square root of a complex number.