Search results
Results from the WOW.Com Content Network
With a symmetrical rocket or missile, the directional stability in yaw is the same as the pitch stability; it resembles the short period pitch oscillation, with yaw plane equivalents to the pitch plane stability derivatives. For this reason, pitch and yaw directional stability are collectively known as the "weathercock" stability of the missile.
Normal axis, or yaw axis — an axis drawn from top to bottom, and perpendicular to the other two axes, parallel to the fuselage or frame station.; Transverse axis, lateral axis, or pitch axis — an axis running from the pilot's left to right in piloted aircraft, and parallel to the wings of a winged aircraft, parallel to the buttock line.
Yaw is known as "heading". A fixed-wing aircraft increases or decreases the lift generated by the wings when it pitches nose up or down by increasing or decreasing the angle of attack (AOA). The roll angle is also known as bank angle on a fixed-wing aircraft, which usually "banks" to change the horizontal direction of flight.
A yaw rotation is a movement around the yaw axis of a rigid body that changes the direction it is pointing, to the left or right of its direction of motion. The yaw rate or yaw velocity of a car, aircraft, projectile or other rigid body is the angular velocity of this rotation, or rate of change of the heading angle when the aircraft is horizontal.
The vertical/Z axis, or yaw axis, is an imaginary line running vertically through the ship and through its centre of mass. A yaw motion is a side-to side movement of the bow and stern of the ship. The transverse/Y axis, lateral axis, or pitch axis is an imaginary line running horizontally across the ship and through the centre of mass. A pitch ...
A yaw will obtain the bearing, a pitch will yield the elevation, and; a roll gives the bank angle. Therefore, in aerospace they are sometimes called yaw, pitch, and roll. Notice that this will not work if the rotations are applied in any other order or if the airplane axes start in any position non-equivalent to the reference frame.
A sideslip develops, resulting in a slip-flow which is right-to-left. Now examine the resulting forces one at a time, calling any rightward influence yaw-in, leftward yaw-out, or roll-in or -out, whichever applies. The slip-flow will: push the fin, rudder, and other side areas aft of the plane's centre of gravity to the left, causing a right ...
Using ailerons causes adverse yaw, meaning the nose of the aircraft yaws in a direction opposite to the aileron application. When moving the aileron control to bank the wings to the left, adverse yaw moves the nose of the aircraft to the right. Adverse yaw is most pronounced in low-speed aircraft with long wings, such as gliders.