Search results
Results from the WOW.Com Content Network
In astronomy or planetary science, the frost line, also known as the snow line or ice line, is the minimum distance from the central protostar of a solar nebula where the temperature is low enough for volatile compounds such as water, ammonia, methane, carbon dioxide and carbon monoxide to condense into solid grains, which will allow their accretion into planetesimals.
Leidenfrost droplet Demonstration of the Leidenfrost effect Leidenfrost effect of a single drop of water. The Leidenfrost effect is a physical phenomenon in which a liquid, close to a solid surface of another body that is significantly hotter than the liquid's boiling point, produces an insulating vapor layer that keeps the liquid from boiling rapidly.
It is sometimes called freeze line, [3] while other disstinguish the concepts of frost/freeze line. [2] The distance from the die is called the height of the frost line. It depends on various factors, including the melt temperature, the speed of cooling, the extrusion speed, and the diameter of the bubble.
In geology, the frost line is the level down to which the soil will normally freeze each winter. By an analogy, the term is introduced in other areas. Frost line (astrophysics), a particular distance in the solar nebula from the central protosun where it is cool enough for hydrogen compounds such as water, ammonia, and methane to condense into solid ice grains.
Triboluminescence is a phenomenon in which light is generated when a material is mechanically pulled apart, ripped, scratched, crushed, or rubbed (see tribology). The phenomenon is not fully understood but appears in most cases to be caused by the separation and reunification of static electric charges , see also triboelectric effect .
In the scientific fields of physics and chemistry, the term flash freezing refers to the process by which objects become frozen rapidly. [1] This is done by subjecting them to cryogenic temperatures, or it can be done through direct contact with liquid nitrogen at −196 °C (−320.8 °F). This process is commonly used in the food industry.
In the 1860s, Tyndall did a number of experiments with light, shining beams through various gases and liquids and recording the results. In doing so, Tyndall discovered that when gradually filling the tube with smoke and then shining a beam of light through it, the beam appeared to be blue from the sides of the tube but red from the far end. [3]
The slope of the line therefore represents the standard potential between two oxidation states. In other words, the steepness of the line shows the tendency for those two reactants to react and to form the lowest-energy product. [1] There is a possibility of having either a positive or a negative slope.