enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Outline of discrete mathematics - Wikipedia

    en.wikipedia.org/wiki/Outline_of_discrete...

    Discrete mathematics is the study of mathematical structures that are fundamentally discrete rather than continuous.In contrast to real numbers that have the property of varying "smoothly", the objects studied in discrete mathematics – such as integers, graphs, and statements in logic [1] – do not vary smoothly in this way, but have distinct, separated values. [2]

  3. Discrete mathematics - Wikipedia

    en.wikipedia.org/wiki/Discrete_mathematics

    Discrete mathematics is the study of mathematical structures that can be considered "discrete" (in a way analogous to discrete variables, having a bijection with the set of natural numbers) rather than "continuous" (analogously to continuous functions). Objects studied in discrete mathematics include integers, graphs, and statements in logic.

  4. Discrete group - Wikipedia

    en.wikipedia.org/wiki/Discrete_group

    A discrete subgroup H of G is cocompact if there is a compact subset K of G such that HK = G. Discrete normal subgroups play an important role in the theory of covering groups and locally isomorphic groups. A discrete normal subgroup of a connected group G necessarily lies in the center of G and is therefore abelian. Other properties:

  5. Lattice (discrete subgroup) - Wikipedia

    en.wikipedia.org/wiki/Lattice_(discrete_subgroup)

    Let be a locally compact group and a discrete subgroup (this means that there exists a neighbourhood of the identity element of such that = {}).Then is called a lattice in if in addition there exists a Borel measure on the quotient space / which is finite (i.e. (/) < +) and -invariant (meaning that for any and any open subset / the equality () = is satisfied).

  6. Complete lattice - Wikipedia

    en.wikipedia.org/wiki/Complete_lattice

    If 0 is removed from this structure it remains a lattice but ceases to be complete. The subgroups of any given group under inclusion. (While the infimum here is the usual set-theoretic intersection, the supremum of a set of subgroups is the subgroup generated by the set-theoretic union of the subgroups, not the set-theoretic union itself.)

  7. Lattice (order) - Wikipedia

    en.wikipedia.org/wiki/Lattice_(order)

    A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra.It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper bound or join) and a unique infimum (also called a greatest lower bound or meet).

  8. Compact group - Wikipedia

    en.wikipedia.org/wiki/Compact_group

    The circle of center 0 and radius 1 in the complex plane is a compact Lie group with complex multiplication.. In mathematics, a compact (topological) group is a topological group whose topology realizes it as a compact topological space (when an element of the group is operated on, the result is also within the group).

  9. Boolean algebra (structure) - Wikipedia

    en.wikipedia.org/wiki/Boolean_algebra_(structure)

    The class of all Boolean algebras, together with this notion of morphism, forms a full subcategory of the category of lattices. An isomorphism between two Boolean algebras A and B is a homomorphism f : A → B with an inverse homomorphism, that is, a homomorphism g : B → A such that the composition g ∘ f : A → A is the identity function ...