Search results
Results from the WOW.Com Content Network
Gap junctions were first described as close appositions as other tight junctions, but following electron microscopy studies in 1967, they were renamed gap junctions to distinguish them from tight junctions. [2] They bridge a 2-4 nm gap between cell membranes. [3] Gap junctions use protein complexes known as connexons to
Each gap junction (sometimes called a nexus) contains numerous gap junction channels that cross the plasma membranes of both cells. [11] With a lumen diameter of about 1.2 to 2.0 nm, [2] [12] the pore of a gap junction channel is wide enough to allow ions and even medium-size molecules like signaling molecules to flow from one cell to the next, [2] [13] thereby connecting the two cells' cytoplasm.
Gap junctions are often present at nerve endings such as in cardiac muscle and are important in maintaining homeostasis in the liver and proper function of the kidneys. The gap junction itself is a structure that is a specialized transmembrane protein formed by a connexon hemichannel. [ 8 ]
Gap junctions play vital roles in the human body, [11] including their role in the uniform contractile of the heart muscle. [11] They are also relevant in signal transfers in the brain, and their absence shows a decreased cell density in the brain. [12] Retinal and skin cells are also dependent on gap junctions in cell differentiation and ...
A gap junction modulator is a compound or agent that either facilitates or inhibits the transfer of small molecules between biological cells by regulating gap junctions. [1] Various physiological processes including cardiac , neural or auditory , depend on gap junctions to perform crucial regulatory roles, and the modulators themselves are the ...
Connexins are commonly named according to their molecular weights, e.g. Cx26 is the connexin protein of 26 kDa. A competing nomenclature is the gap junction protein system, where connexins are sorted by their α (GJA) and β (GJB) forms, with additional connexins grouped into the C, D and E groupings, followed by an identifying number, e.g. GJA1 corresponds to Cx43.
These cytoplasmic processes are joined together by gap junctions. Osteocytes do not entirely fill up the canaliculi. The remaining space is known as the periosteocytic space, which is filled with periosteocytic fluid. This fluid contains substances too large to be transported through the gap junctions that connect the osteocytes.
Gap junctions connect the cytoplasms of neighboring cells electrically allowing cardiac action potentials to spread between cardiac cells by permitting the passage of ions between cells, producing depolarization of the heart muscle. [3] [2] All of these junctions work together as a single unit called the area composita. [2]