Search results
Results from the WOW.Com Content Network
Excess kurtosis, typically compared to a value of 0, characterizes the “tailedness” of a distribution. A univariate normal distribution has an excess kurtosis of 0. Negative excess kurtosis indicates a platykurtic distribution, which doesn’t necessarily have a flat top but produces fewer or less extreme outliers than the normal distribution.
Mardia's kurtosis statistic is skewed and converges very slowly to the limiting normal distribution. For medium size samples ( 50 ≤ n < 400 ) {\displaystyle (50\leq n<400)} , the parameters of the asymptotic distribution of the kurtosis statistic are modified [ 37 ] For small sample tests ( n < 50 {\displaystyle n<50} ) empirical critical ...
Let X and Y each be normally distributed with correlation coefficient ρ. The cokurtosis terms are (,,,) = +(,,,) = (,,,) =Since the cokurtosis depends only on ρ, which is already completely determined by the lower-degree covariance matrix, the cokurtosis of the bivariate normal distribution contains no new information about the distribution.
A Bayesian account can be found in Gelman et al. [15] The degrees of freedom parameter controls the kurtosis of the distribution and is correlated with the scale parameter. The likelihood can have multiple local maxima and, as such, it is often necessary to fix the degrees of freedom at a fairly low value and estimate the other parameters ...
A fat-tailed distribution is a probability distribution that exhibits a large skewness or kurtosis, relative to that of either a normal distribution or an exponential distribution. [when defined as?] In common usage, the terms fat-tailed and heavy-tailed are sometimes synonymous; fat-tailed is sometimes also defined as a subset of heavy-tailed ...
The plot of excess kurtosis as a function of the variance and the mean shows that the minimum value of the excess kurtosis (−2, which is the minimum possible value for excess kurtosis for any distribution) is intimately coupled with the maximum value of variance (1/4) and the symmetry condition: the mean occurring at the midpoint (μ = 1/2).
The kurtosis of the geometric distribution is +. [ 6 ] : 115 The excess kurtosis of a distribution is the difference between its kurtosis and the kurtosis of a normal distribution , 3 {\displaystyle 3} .
In statistics, the Jarque–Bera test is a goodness-of-fit test of whether sample data have the skewness and kurtosis matching a normal distribution. The test is named after Carlos Jarque and Anil K. Bera. The test statistic is always nonnegative. If it is far from zero, it signals the data do not have a normal distribution.