enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kurtosis - Wikipedia

    en.wikipedia.org/wiki/Kurtosis

    Excess kurtosis, typically compared to a value of 0, characterizes the “tailedness” of a distribution. A univariate normal distribution has an excess kurtosis of 0. Negative excess kurtosis indicates a platykurtic distribution, which doesn’t necessarily have a flat top but produces fewer or less extreme outliers than the normal distribution.

  3. Kurtosis risk - Wikipedia

    en.wikipedia.org/wiki/Kurtosis_risk

    In statistics and decision theory, kurtosis risk is the risk that results when a statistical model assumes the normal distribution, but is applied to observations that have a tendency to occasionally be much farther (in terms of number of standard deviations) from the average than is expected for a normal distribution.

  4. Skewness - Wikipedia

    en.wikipedia.org/wiki/Skewness

    Example distribution with positive skewness. These data are from experiments on wheat grass growth. In probability theory and statistics, skewness is a measure of the asymmetry of the probability distribution of a real-valued random variable about its mean.

  5. Normal probability plot - Wikipedia

    en.wikipedia.org/wiki/Normal_probability_plot

    The normal probability plot is formed by plotting the sorted data vs. an approximation to the means or medians of the corresponding order statistics; see rankit. Some plot the data on the vertical axis; [1] others plot the data on the horizontal axis. [2] [3] Different sources use slightly different approximations for rankits.

  6. Method of moments (statistics) - Wikipedia

    en.wikipedia.org/wiki/Method_of_moments_(statistics)

    In statistics, the method of moments is a method of estimation of population parameters.The same principle is used to derive higher moments like skewness and kurtosis. It starts by expressing the population moments (i.e., the expected values of powers of the random variable under consideration) as functions of the parameters of interest.

  7. L-moment - Wikipedia

    en.wikipedia.org/wiki/L-moment

    One disadvantage of L-moment ratios for estimation is their typically smaller sensitivity. For instance, the Laplace distribution has a kurtosis of 6 and weak exponential tails, but a larger 4th L-moment ratio than e.g. the student-t distribution with d.f.=3, which has an infinite kurtosis and much heavier tails.

  8. Fat-tailed distribution - Wikipedia

    en.wikipedia.org/wiki/Fat-tailed_distribution

    A fat-tailed distribution is a probability distribution that exhibits a large skewness or kurtosis, relative to that of either a normal distribution or an exponential distribution. [when defined as?] In common usage, the terms fat-tailed and heavy-tailed are sometimes synonymous; fat-tailed is sometimes also defined as a subset of heavy-tailed ...

  9. Shape of a probability distribution - Wikipedia

    en.wikipedia.org/wiki/Shape_of_a_probability...

    Considerations of the shape of a distribution arise in statistical data analysis, where simple quantitative descriptive statistics and plotting techniques such as histograms can lead on to the selection of a particular family of distributions for modelling purposes. The normal distribution, often called the "bell curve" Exponential distribution