Search results
Results from the WOW.Com Content Network
The Pythagorean theorem has at least 370 known proofs. [1]In mathematics and formal logic, a theorem is a statement that has been proven, or can be proven. [a] [2] [3] The proof of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems.
Löb's theorem (mathematical logic) Lochs's theorem (number theory) Looman–Menchoff theorem (complex analysis) Łoś' theorem (model theory) Lovelock's theorem ; Löwenheim–Skolem theorem (mathematical logic) Lucas's theorem (number theory) Lukacs's proportion-sum independence theorem (probability) Lumer–Phillips theorem (semigroup theory)
Bet hedging (biology) Bishop–Cannings theorem; F. Fisher's fundamental theorem of natural selection; L. Lewis' law; M. Marginal value theorem; Monodomain model
A declarative statement that is capable of being true or false, serving as the basic unit of meaning in logic and philosophy. propositional attitude A mental state expressed by verbs such as believe, desire, hope, and know, followed by a proposition, reflecting an individual's attitude towards the truth of the proposition. propositional connective
In mathematical logic, a theory (also called a formal theory) is a set of sentences in a formal language. In most scenarios a deductive system is first understood from context, after which an element ϕ ∈ T {\displaystyle \phi \in T} of a deductively closed theory T {\displaystyle T} is then called a theorem of the theory.
The theorem is a syntactic consequence of all the well-formed formulas preceding it in the proof. For a well-formed formula to qualify as part of a proof, it must be the result of applying a rule of the deductive apparatus (of some formal system) to the previous well-formed formulas in the proof sequence.
First-order logic—also called predicate logic, predicate calculus, quantificational logic—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables.
In this way all logical connectives can be expressed in terms of preserving logical truth. The logical form of a sentence is determined by its semantic or syntactic structure and by the placement of logical constants. Logical constants determine whether a statement is a logical truth when they are combined with a language that limits its meaning.