Search results
Results from the WOW.Com Content Network
The fixed point iteration x n+1 = cos(x n) with initial value x 0 = −1 converges to the Dottie number. Zero is the only real fixed point of the sine function; in other words the only intersection of the sine function and the identity function is sin ( 0 ) = 0 {\displaystyle \sin(0)=0} .
A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. [1]
The foci of a triangle's Steiner inellipse can be found as follows, according to Marden's theorem: [56] [57] Denote the triangle's vertices in the complex plane as a = x A + y A i, b = x B + y B i, and c = x C + y C i. Write the cubic equation () =, take its derivative, and equate the (quadratic) derivative to zero. Marden's theorem says that ...
The sum of the entries along the main diagonal (the trace), plus one, equals 4 − 4(x 2 + y 2 + z 2), which is 4w 2. Thus we can write the trace itself as 2w 2 + 2w 2 − 1; and from the previous version of the matrix we see that the diagonal entries themselves have the same form: 2x 2 + 2w 2 − 1, 2y 2 + 2w 2 − 1, and 2z 2 + 2w 2 − 1. So ...
The composition of two rotations is itself a rotation. Let (a 1, b 1, c 1, d 1) and (a 2, b 2, c 2, d 2) be the Euler parameters of two rotations. The parameters for the compound rotation (rotation 2 after rotation 1) are as follows:
A family of conic sections of varying eccentricity share a focus point and directrix line, including an ellipse (red, e = 1/2), a parabola (green, e = 1), and a hyperbola (blue, e = 2). The conic of eccentricity 0 in this figure is an infinitesimal circle centered at the focus, and the conic of eccentricity ∞ is an infinitesimally separated ...
The 2-component left-handed Weyl spinor transforms under D (1/2, 0) and the 2-component right-handed Weyl spinor transforms under D (0, 1/2). Dirac spinors satisfying the Dirac equation transform under the representation D (1/2, 0) ⊕ D (0, 1/2), the direct sum of the irreps for the Weyl spinors.