Search results
Results from the WOW.Com Content Network
The throughput is then calculated by dividing the file size by the time to get the throughput in megabits, kilobits, or bits per second. Unfortunately, the results of such an exercise will often result in the goodput which is less than the maximum theoretical data throughput, leading to people believing that their communications link is not ...
The network throughput of a connection with flow control, for example a TCP connection, with a certain window size (buffer size), can be expressed as: Network throughput ≈ Window size / roundtrip time. In case of only one physical link between the sending and transmitting nodes, this corresponds to:
In a network simulation model with infinite packet queues, the asymptotic throughput occurs when the latency (the packet queuing time) goes to infinity, while if the packet queues are limited, or the network is a multi-drop network with many sources, and collisions may occur, the packet-dropping rate approaches 100%.
For example, if a file is transferred, the goodput that the user experiences corresponds to the file size in bits divided by the file transfer time. The goodput is always lower than the throughput (the gross bit rate that is transferred physically), which generally is lower than network access connection speed (the channel capacity or bandwidth).
For discussions of this type, the terms 'throughput' and 'bandwidth' are often used interchangeably. The Time Window is the period over which the throughput is measured. The choice of an appropriate time window will often dominate calculations of throughput, and whether latency is taken into account or not will determine whether the latency ...
In data communications, the bandwidth-delay product is the product of a data link's capacity (in bits per second) and its round-trip delay time (in seconds). [1] The result, an amount of data measured in bits (or bytes), is equivalent to the maximum amount of data on the network circuit at any given time, i.e., data that has been transmitted but not yet acknowledged.
RTT is a measure of the amount of time taken for an entire message to be sent to a destination and for a reply to be sent back to the sender. The time to send the message to the destination in its entirety is known as the network latency, and thus RTT is twice the latency in the network plus a processing delay at the destination. The other ...
In a network based on packet switching, transmission delay (or store-and-forward delay, also known as packetization delay or serialization delay) is the amount of time required to push all the packet's bits into the wire. In other words, this is the delay caused by the data-rate of the link.