Search results
Results from the WOW.Com Content Network
Cyclohexane is a colourless, flammable liquid with a distinctive detergent-like odor, reminiscent of cleaning products (in which it is sometimes used). Cyclohexane is mainly used for the industrial production of adipic acid and caprolactam, which are precursors to nylon. [5] Cyclohexyl (C 6 H 11) is the alkyl substituent of cyclohexane and is ...
Cyclohexanone is produced by the oxidation of cyclohexane in air, typically using cobalt catalysts: [11]. C 6 H 12 + O 2 → (CH 2) 5 CO + H 2 O. This process forms cyclohexanol as a by-product, and this mixture, called "KA Oil" for ketone-alcohol oil, is the main feedstock for the production of adipic acid.
Cyclohexanol is produced by the oxidation of cyclohexane in air, typically using cobalt catalysts: [5]. 2 C 6 H 12 + O 2 → 2 C 6 H 11 OH. This process coforms cyclohexanone, and this mixture ("KA oil" for ketone-alcohol oil) is the main feedstock for the production of adipic acid.
Production. It is produced by buta-1,3-diene dimerization in a Diels-Alder reaction. [5] [4] The reaction is conducted at 110 - 425 °C at pressures of 1.3 - 100 ...
Cyclohexene is most stable in a half-chair conformation, [11] unlike the preference for a chair form of cyclohexane. One basis for the cyclohexane conformational preference for a chair is that it allows each bond of the ring to adopt a staggered conformation. For cyclohexene, however, the alkene is planar, equivalent to an eclipsed conformation ...
For cyclohexane, cyclohexene, and cyclohexadiene, dehydrogenation is the conceptually simplest pathway for aromatization. The activation barrier decreases with the degree of unsaturation. Thus, cyclohexadienes are especially prone to aromatization. Formally, dehydrogenation is a redox process. Dehydrogenative aromatization is the reverse of ...
Cyclohexanone oxime can be prepared from the condensation reaction between cyclohexanone and hydroxylamine: [1]. C 5 H 10 CO + H 2 NOH → C 5 H 10 C=NOH + H 2 O. Alternatively, another industrial route involves the reaction of cyclohexane with nitrosyl chloride, which is a free-radical reaction.
It is a colorless low-melting solid used in the production of polyester resins. Commercial samples consist of a mixture of cis and trans isomers. It is a di-substituted derivative of cyclohexane and is classified as a diol, meaning that it has two OH functional groups. Commercial CHDM typically has a cis/trans ratio of 30:70.