Search results
Results from the WOW.Com Content Network
During the selection step of the research study, if an unequal number of test subjects have similar subject-related variables there is a threat to the internal validity. For example, a researcher created two test groups, the experimental and the control groups.
It is a significant threat to a study's internal validity, and is therefore typically controlled using a double-blind experimental design. It may include conscious or unconscious influences on subject behavior including creation of demand characteristics that influence subjects, and altered or selective recording of experimental results ...
Self-selection bias or a volunteer bias in studies offer further threats to the validity of a study as these participants may have intrinsically different characteristics from the target population of the study. [19] Studies have shown that volunteers tend to come from a higher social standing than from a lower socio-economic background. [20]
The major threats to internal validity are history, maturation, testing, instrumentation, statistical regression, selection, experimental mortality, and selection-history interactions. One way to minimize the influence of artifacts is to use a pretest-posttest control group design.
In other words, the relevance of external and internal validity to a research study depends on the goals of the study. Furthermore, conflating research goals with validity concerns can lead to the mutual-internal-validity problem, where theories are able to explain only phenomena in artificial laboratory settings but not the real world. [13] [14]
The lack of random assignment in the quasi-experimental design method may allow studies to be more feasible, but this also poses many challenges for the investigator in terms of internal validity. This deficiency in randomization makes it harder to rule out confounding variables and introduces new threats to internal validity. [11]
Natural experiments leverage events outside the researchers' and subjects' control to address several threats to internal validity, minimising the chance of confounding elements, while sacrificing a few of the features of field data, such as more natural ranges of treatment effects and the presence of organically formed context. [16]
Statistical conclusion validity is the degree to which conclusions about the relationship among variables based on the data are correct or "reasonable". This began as being solely about whether the statistical conclusion about the relationship of the variables was correct, but now there is a movement towards moving to "reasonable" conclusions that use: quantitative, statistical, and ...