Search results
Results from the WOW.Com Content Network
The Yerkes spectral classification, also called the MK, or Morgan-Keenan (alternatively referred to as the MKK, or Morgan-Keenan-Kellman) [18] [19] system from the authors' initials, is a system of stellar spectral classification introduced in 1943 by William Wilson Morgan, Philip C. Keenan, and Edith Kellman from Yerkes Observatory. [20]
The Henry Draper Catalogue (HD) is an astronomical star catalogue published between 1918 and 1924, giving spectroscopic classifications for 225,300 stars; it was later expanded by the Henry Draper Extension (HDE), published between 1925 and 1936, which gave classifications for 46,850 more stars, and by the Henry Draper Extension Charts (HDEC), published from 1937 to 1949 in the form of charts ...
These spectral lines serve as a proxy for the temperature of the star, an early form of spectral classification. The apparent magnitude of stars in the same cluster is equivalent to their absolute magnitude and so this early diagram was effectively a plot of luminosity against temperature.
The spectral classification can be influenced by metallicity, rotation, unusual chemical peculiarities, etc. The initial stages of the subgiant branch in a star like the sun are prolonged with little external indication of the internal changes.
Spectral classification. G2V [6] Metallicity: ... [66] meaning it is a G-type star, with 2 indicating its surface temperature is in the second range of the G class.
The MK classification assigned each star a spectral type—based on the Harvard classification—and a luminosity class. The Harvard classification had been developed by assigning a different letter to each star based on the strength of the hydrogen spectral line before the relationship between spectra and temperature was known.
The classification scheme uses the letter "I" for "inconsistent" spectral data, and should not be confused with a spectral type. An example is the Themistian asteroid 515 Athalia, which, at the time of classification was inconsistent, as the body's spectrum and albedo was that of a stony and carbonaceous asteroid, respectively. [8]
An O-type star is a hot, blue-white star of spectral type O in the Yerkes classification system employed by astronomers. They have surface temperatures in excess of 30,000 kelvins (K). Stars of this type have strong absorption lines of ionised helium, strong lines of other ionised elements, and hydrogen and neutral helium lines weaker than ...