Search results
Results from the WOW.Com Content Network
Sections 4.3 (The master method) and 4.4 (Proof of the master theorem), pp. 73–90. Michael T. Goodrich and Roberto Tamassia. Algorithm Design: Foundation, Analysis, and Internet Examples. Wiley, 2002. ISBN 0-471-38365-1. The master theorem (including the version of Case 2 included here, which is stronger than the one from CLRS) is on pp. 268 ...
In mathematics, a theorem that covers a variety of cases is sometimes called a master theorem. Some theorems called master theorems in their fields include: Master theorem (analysis of algorithms), analyzing the asymptotic behavior of divide-and-conquer algorithms; Ramanujan's master theorem, providing an analytic expression for the Mellin ...
D. Foata and G.-N. Han, A new proof of the Garoufalidis-Lê-Zeilberger Quantum MacMahon Master Theorem, Journal of Algebra 307 (2007), no. 1, 424–431 . D. Foata and G.-N. Han, Specializations and extensions of the quantum MacMahon Master Theorem, Linear Algebra and its Applications 423 (2007), no. 2–3, 445–455 .
PhD thesis by Dr Paul Garcia," " O'Connor, John J.; Robertson, Edmund F., "Percy Alexander MacMahon", MacTutor History of Mathematics Archive, University of St Andrews; P.A. MacMahon, Combinatory analysis, 2 vols, Cambridge University Press, 1915–16. Obituary Notices – Monthly Notices of the Royal Astronomical Society 90, 373–378.
In computer science, the Akra–Bazzi method, or Akra–Bazzi theorem, is used to analyze the asymptotic behavior of the mathematical recurrences that appear in the analysis of divide and conquer algorithms where the sub-problems have substantially different sizes.
For this recurrence relation, the master theorem for divide-and-conquer recurrences gives the asymptotic bound () = (). It follows that, for sufficiently large n , Karatsuba's algorithm will perform fewer shifts and single-digit additions than longhand multiplication, even though its basic step uses more additions and shifts than the ...
The closed form follows from the master theorem for divide-and-conquer recurrences. The number of comparisons made by merge sort in the worst case is given by the sorting numbers. These numbers are equal to or slightly smaller than (n ⌈lg n⌉ − 2 ⌈lg n⌉ + 1), which is between (n lg n − n + 1) and (n lg n + n + O(lg n)). [6]
move to sidebar hide. From Wikipedia, the free encyclopedia