Search results
Results from the WOW.Com Content Network
One known example of these transport proteins is the melibiose, or melB, carrier protein derived from the melB gene of E. coli. [3] This strain of beta-galactoside permease is known it transport melibiose and other galactosides across the cell membrane using hydrogen, sodium, or lithium ions in cotransport. [4]
β-Galactosidase (EC 3.2.1.23, beta-gal or β-gal; systematic name β-D-galactoside galactohydrolase) is a glycoside hydrolase enzyme that catalyzes hydrolysis of terminal non-reducing β-D-galactose residues in β-D-galactosides. (This enzyme digests many β-Galactosides, not just lactose.
α-Galactosidase ( EC 3.2.1.22, α-GAL, α-GAL A; systematic name α-D-galactoside galactohydrolase) is a glycoside hydrolase enzyme that catalyses the following reaction: [1] Hydrolysis of terminal, non-reducing α- D -galactose residues in α- D -galactosides, including galactose oligosaccharides, galactomannans and galactolipids
Lactose permease is a membrane protein which is a member of the major facilitator superfamily.Lactose permease can be classified as a symporter, which uses the proton gradient towards the cell to transport β-galactosides such as lactose in the same direction into the cell.
The lactose operon (lac operon) is an operon required for the transport and metabolism of lactose in E. coli and many other enteric bacteria.Although glucose is the preferred carbon source for most enteric bacteria, the lac operon allows for the effective digestion of lactose when glucose is not available through the activity of β-galactosidase. [1]
A membrane transport protein is a membrane protein involved in the movement of ions, small molecules, and macromolecules, such as another protein, across a biological membrane. Transport proteins are integral transmembrane proteins ; that is they exist permanently within and span the membrane across which they transport substances.
The permeases are membrane transport proteins, a class of multipass transmembrane proteins that allow the diffusion of a specific molecule in or out of the cell in the direction of a concentration gradient, a form of facilitated diffusion. [1] The permease binding is the first step of translocation.
The enzyme UDP-glucose 4-epimerase (EC 5.1.3.2), also known as UDP-galactose 4-epimerase or GALE, is a homodimeric epimerase found in bacterial, fungal, plant, and mammalian cells. This enzyme performs the final step in the Leloir pathway of galactose metabolism, catalyzing the reversible conversion of UDP-galactose to UDP-glucose. [1]