Search results
Results from the WOW.Com Content Network
A recent study conducted in 2020–2021 determined that Beta-Galactosidase activity correlates with senescence of the cells. Senescence of the cells can be interpreted as cells that do not divide, but cells that do not die. Beta-Galactosidase activity can be overexpressed, and this can lead to various diseases afflicting a wide range of body ...
One known example of these transport proteins is the melibiose, or melB, carrier protein derived from the melB gene of E. coli. [3] This strain of beta-galactoside permease is known it transport melibiose and other galactosides across the cell membrane using hydrogen, sodium, or lithium ions in cotransport. [4]
Galactosidases are enzymes (glycoside hydrolases) that catalyze the hydrolysis of galactosides into monosaccharides.. Galactosides can be classified as either alpha or beta. If the galactoside is classified as an alpha-galactoside, the enzyme is called alpha-galactosidase, and is responsible for catalyzing the hydrolysis of substrates that contain α-galactosidic residues, such as ...
Galactoside acetyltransferase (also known as Galactoside O-acetyltransferase, thiogalactoside transacetylase, β-galactoside transacetylase and GAT) is an enzyme that transfers an acetyl group from acetyl-CoA to β-galactosides, glucosides and lactosides. It is coded for by the lacA gene of the lac operon in E. coli. [1]
Lactose permease is a membrane protein which is a member of the major facilitator superfamily.Lactose permease can be classified as a symporter, which uses the proton gradient towards the cell to transport β-galactosides such as lactose in the same direction into the cell.
α-Galactosidase ( EC 3.2.1.22, α-GAL, α-GAL A; systematic name α-D-galactoside galactohydrolase) is a glycoside hydrolase enzyme that catalyses the following reaction: [1] Hydrolysis of terminal, non-reducing α- D -galactose residues in α- D -galactosides, including galactose oligosaccharides, galactomannans and galactolipids
The lactose operon (lac operon) is an operon required for the transport and metabolism of lactose in E. coli and many other enteric bacteria.Although glucose is the preferred carbon source for most enteric bacteria, the lac operon allows for the effective digestion of lactose when glucose is not available through the activity of β-galactosidase. [1]
The RNA transcript of the GLB1 gene is alternatively spliced and produces 2 mRNAs. The 2.5-kilobase transcript encodes the beta-galactosidase enzyme of 677 amino acids.The alternative 2.0-kb mRNA encodes a beta-galactosidase-related protein (S-Gal) that is only 546 amino acids long and that has no enzymatic activity.