Search results
Results from the WOW.Com Content Network
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
Schaum's Outlines (/ ʃ ɔː m /) is a series of supplementary texts for American high school, AP, and college-level courses, currently published by McGraw-Hill Education Professional, a subsidiary of McGraw-Hill Education.
Schaum's Outline of Real Variables (1969) Schaum's Outline of Advanced Mathematics for Engineers and Scientists (1971) [2009] Schaum's Outline of Finite Differences and Difference Equations (1971) Schaum's Outline of Fourier Analysis with Applications to Boundary-Value Problems (1974) Schaum's Outline of Probability and Statistics (1975) [2013 ...
The term law of total probability is sometimes taken to mean the law of alternatives, which is a special case of the law of total probability applying to discrete random variables. [ citation needed ] One author uses the terminology of the "Rule of Average Conditional Probabilities", [ 4 ] while another refers to it as the "continuous law of ...
Probability and statistics are two closely related fields in mathematics and sometimes combined for academic purposes: Probability; Statistics; Glossary of probability and statistics; Notation in probability and statistics; Timeline of probability and statistics
An arbitrary function φ : R n → C is the characteristic function of some random variable if and only if φ is positive definite, continuous at the origin, and if φ(0) = 1. Khinchine’s criterion. A complex-valued, absolutely continuous function φ, with φ(0) = 1, is a characteristic function if and only if it admits the representation
The problem of points, also called the problem of division of the stakes, is a classical problem in probability theory.One of the famous problems that motivated the beginnings of modern probability theory in the 17th century, it led Blaise Pascal to the first explicit reasoning about what today is known as an expected value.
The proposition in probability theory known as the law of total expectation, [1] the law of iterated expectations [2] (LIE), Adam's law, [3] the tower rule, [4] and the smoothing theorem, [5] among other names, states that if is a random variable whose expected value is defined, and is any random variable on the same probability space, then