enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sherwood number - Wikipedia

    en.wikipedia.org/wiki/Sherwood_number

    The Sherwood number (Sh) (also called the mass transfer Nusselt number) is a dimensionless number used in mass-transfer operation. It represents the ratio of the total mass transfer rate (convection + diffusion) to the rate of diffusive mass transport, [1] and is named in honor of Thomas Kilgore Sherwood. It is defined as follows

  3. Mass transfer - Wikipedia

    en.wikipedia.org/wiki/Mass_transfer

    This rate can be quantified through the calculation and application of mass transfer coefficients for an overall process. These mass transfer coefficients are typically published in terms of dimensionless numbers, often including Péclet numbers, Reynolds numbers, Sherwood numbers, and Schmidt numbers, among others. [2] [3] [4]

  4. List of dimensionless quantities - Wikipedia

    en.wikipedia.org/wiki/List_of_dimensionless...

    chemistry (mass of one atom divided by the atomic mass constant, 1 Da) Bodenstein number: Bo or Bd = / = chemistry (residence-time distribution; similar to the axial mass transfer Peclet number) [2] Damkohler number: Da =

  5. Dimensionless numbers in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_numbers_in...

    Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.

  6. Churchill–Bernstein equation - Wikipedia

    en.wikipedia.org/wiki/Churchill–Bernstein_equation

    The same restrictions described in the heat transfer definition are applied to the mass transfer definition. The Sherwood number can be used to find an overall mass transfer coefficient and applied to Fick's law of diffusion to find concentration profiles and mass transfer fluxes.

  7. Dimensionless quantity - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_quantity

    Sherwood number – (also called the mass transfer Nusselt number) is a dimensionless number used in mass-transfer operation. It represents the ratio of the convective mass transfer to the rate of diffusive mass transport.

  8. Transport phenomena - Wikipedia

    en.wikipedia.org/wiki/Transport_phenomena

    Meanwhile, for mass transfer, the comparison is between viscous diffusivity and mass Diffusivity (), given by the Schmidt number. In some cases direct analytic solutions can be found from these equations for the Nusselt and Sherwood numbers.

  9. Mass transfer coefficient - Wikipedia

    en.wikipedia.org/wiki/Mass_transfer_coefficient

    Mass transfer coefficients can be estimated from many different theoretical equations, correlations, and analogies that are functions of material properties, intensive properties and flow regime (laminar or turbulent flow). Selection of the most applicable model is dependent on the materials and the system, or environment, being studied.