Search results
Results from the WOW.Com Content Network
The plotted line represents the variation of instantaneous voltage (or current) with respect to time. This cycle repeats with a frequency that depends on the power system. In electrical engineering, three-phase electric power systems have at least three conductors carrying alternating voltages that are offset in time by one-third of the period ...
Three-phase transformer with four-wire output for 208Y/120 volt service: one wire for neutral, others for A, B and C phases. Three-phase electric power (abbreviated 3ϕ [1]) is a common type of alternating current (AC) used in electricity generation, transmission, and distribution. [2]
Symmetrical components are most commonly used for analysis of three-phase electrical power systems. The voltage or current of a three-phase system at some point can be indicated by three phasors, called the three components of the voltage or the current. This article discusses voltage; however, the same considerations also apply to current.
It is widely used in analysis of three-phase electric power circuits. The Y-Δ transform can be considered a special case of the star-mesh transform for three resistors. In mathematics, the Y-Δ transform plays an important role in theory of circular planar graphs. [2]
In power engineering, the power-flow study, or load-flow study, is a numerical analysis of the flow of electric power in an interconnected system. A power-flow study usually uses simplified notations such as a one-line diagram and per-unit system, and focuses on various aspects of AC power parameters, such as voltages, voltage angles, real power and reactive power.
Transformation of three phase electrical quantities to two phase quantities is a usual practice to simplify analysis of three phase electrical circuits. Polyphase a.c machines can be represented by an equivalent two phase model provided the rotating polyphases winding in rotor and the stationary polyphase windings in stator can be expressed in a fictitious two axes coils.
The transform applied to three-phase currents, as used by Edith Clarke, is [2] = = [] [() ()]where () is a generic three-phase current sequence and () is the corresponding current sequence given by the transformation .
A set of three line (or line-to-line) voltages in a balanced three-phase (three-wire or four-wire) power system cannot contain harmonics whose frequency is an integer multiple of the frequency of the third harmonics (i.e. harmonics of order =), which includes triplen harmonics (i.e. harmonics of order = ()). [3]