Search results
Results from the WOW.Com Content Network
The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.
Circle packing in a circle is a two-dimensional packing problem with the objective of packing unit circles into the smallest possible larger circle. Table of solutions, 1 ≤ n ≤ 20 [ edit ]
Packing circles in a circle - closely related to spreading points in a unit circle with the objective of finding the greatest minimal separation, d n, between points. Optimal solutions have been proven for n ≤ 13 , and n = 19 .
The most efficient way to pack different-sized circles together is not obvious. In geometry, circle packing is the study of the arrangement of circles (of equal or varying sizes) on a given surface such that no overlapping occurs and so that no circle can be enlarged without creating an overlap.
A circle containing one acre is cut by another whose center is on the circumference of the given circle, and the area common to both is one-half acre. Find the radius of the cutting circle. The solutions in both cases are non-trivial but yield to straightforward application of trigonometry, analytical geometry or integral calculus.
Consider a solution circle of radius r s and three given circles of radii r 1, r 2 and r 3. If the solution circle is externally tangent to all three given circles, the distances between the center of the solution circle and the centers of the given circles equal d 1 = r 1 + r s, d 2 = r 2 + r s and d 3 = r 3 + r s, respectively.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
This problem is known as the primitive circle problem, as it involves searching for primitive solutions to the original circle problem. [9] It can be intuitively understood as the question of how many trees within a distance of r are visible in the Euclid's orchard , standing in the origin.