Search results
Results from the WOW.Com Content Network
Flow of gas through the airways comprises laminar flow, transitional flow and turbulent flow. The tendency for each type of flow is described by the Reynolds number. Heliox's low density produces a lower Reynolds number and hence higher probability of laminar flow for any given airway. Laminar flow tends to generate less resistance than ...
increased tendency to laminar flow; reduced resistance in turbulent flow due to lower density. Heliox 20/80 diffuses 1.8 times faster than oxygen, and the flow of heliox 20/80 from an oxygen flowmeter is 1.8 times the normal flow for oxygen. [7] Heliox has a similar viscosity to air but a significantly lower density (0.5 g/L versus 1.25 g/L at ...
Reynolds’ 1883 experiment on fluid dynamics in pipes Reynolds’ 1883 observations of the nature of the flow in his experiments. In 1883 Osborne Reynolds demonstrated the transition to turbulent flow in a classic experiment in which he examined the behaviour of water flow under different flow rates using a small jet of dyed water introduced into the centre of flow in a larger pipe.
Also with flow rates above 6 L/min, the laminar flow becomes turbulent and the oxygen therapy being delivered is only as effective as delivering 5–6 L/min. The nasal cannula is often used in elderly patients or patients who can benefit from oxygen therapy but do not require it to self respirate.
Where air is flowing in a laminar manner it has less resistance than when it is flowing in a turbulent manner. If flow becomes turbulent, and the pressure difference is increased to maintain flow, this response itself increases resistance. This means that a large increase in pressure difference is required to maintain flow if it becomes turbulent.
With respect to laminar and turbulent flow regimes: laminar flow occurs at low Reynolds numbers, where viscous forces are dominant, and is characterized by smooth, constant fluid motion; turbulent flow occurs at high Reynolds numbers and is dominated by inertial forces, which tend to produce chaotic eddies, vortices and other flow instabilities ...
A bypass transition is a laminar–turbulent transition in a fluid flow over a surface. It occurs when a laminar boundary layer transitions to a turbulent one through some secondary instability mode, bypassing some of the pre-transitional events that typically occur in a natural laminar–turbulent transition. [a]
The dimensionless Reynolds number is an important parameter in the equations that describe whether fully developed flow conditions lead to laminar or turbulent flow. The Reynolds number is the ratio of the inertial force to the shearing force of the fluid: how fast the fluid is moving relative to how viscous it is, irrespective of the scale of ...