Search results
Results from the WOW.Com Content Network
Low-density parity-check (LDPC) codes are a class of highly efficient linear block codes made from many single parity check (SPC) codes. They can provide performance very close to the channel capacity (the theoretical maximum) using an iterated soft-decision decoding approach, at linear time complexity in terms of their block length.
Since the source is only 4 bits then there are only 16 possible transmitted words. Included is the eight-bit value if an extra parity bit is used (see Hamming(7,4) code with an additional parity bit).
The on-line textbook: Information Theory, Inference, and Learning Algorithms, by David J.C. MacKay, contains chapters on elementary error-correcting codes; on the theoretical limits of error-correction; and on the latest state-of-the-art error-correcting codes, including low-density parity-check codes, turbo codes, and fountain codes.
The main idea is to choose the error-correcting bits such that the index-XOR (the XOR of all the bit positions containing a 1) is 0. We use positions 1, 10, 100, etc. (in binary) as the error-correcting bits, which guarantees it is possible to set the error-correcting bits so that the index-XOR of the whole message is 0.
As with other codes, the maximum likelihood decoding of an LDPC code on the binary symmetric channel is an NP-complete problem, [24] shown by reduction from 3-dimensional matching.
Proof. Let be a codeword with a burst of length .Thus it has the pattern (,,,,,), where and are words of length Hence, the words = (,,,,,) and = (,,,,,) are two ...
This book is mainly centered around algebraic and combinatorial techniques for designing and using error-correcting linear block codes. [ 1 ] [ 3 ] [ 9 ] It differs from previous works in this area in its reduction of each result to its mathematical foundations, and its clear exposition of the results follow from these foundations.
By 1963 (or possibly earlier), J. J. Stone (and others) recognized that Reed–Solomon codes could use the BCH scheme of using a fixed generator polynomial, making such codes a special class of BCH codes, [4] but Reed–Solomon codes based on the original encoding scheme are not a class of BCH codes, and depending on the set of evaluation ...