Search results
Results from the WOW.Com Content Network
In probability theory and statistics, the Poisson distribution (/ ˈ p w ɑː s ɒ n /; French pronunciation:) is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. [1]
In statistics, Poisson regression is a generalized linear model form of regression analysis used to model count data and contingency tables. [1] Poisson regression assumes the response variable Y has a Poisson distribution, and assumes the logarithm of its expected value can be modeled by a linear combination of unknown parameters.
A discrete power-law distribution, the most famous example of which is the description of the frequency of words in the English language. The Zipf–Mandelbrot law is a discrete power law distribution which is a generalization of the Zipf distribution. Conway–Maxwell–Poisson distribution Poisson distribution Skellam distribution
The mode of a sample is the element that occurs most often in the collection. For example, the mode of the sample [1, 3, 6, 6, 6, 6, 7, 7, 12, 12, 17] is 6. Given the list of data [1, 1, 2, 4, 4] its mode is not unique. A dataset, in such a case, is said to be bimodal, while a set with more than two modes may be described as multimodal.
A probability distribution whose sample space is one-dimensional (for example real numbers, list of labels, ordered labels or binary) is called univariate, while a distribution whose sample space is a vector space of dimension 2 or more is called multivariate.
One of the limitations of the Poisson distribution is that it assumes equidispersion – the mean and variance of the variable are equal. [2] The displaced Poisson distribution may be useful to model underdispersed or overdispersed data, such as: the distribution of insect populations in crop fields; [3] the number of flowers on plants; [1]
A visual depiction of a Poisson point process starting. In probability theory, statistics and related fields, a Poisson point process (also known as: Poisson random measure, Poisson random point field and Poisson point field) is a type of mathematical object that consists of points randomly located on a mathematical space with the essential feature that the points occur independently of one ...
In probability theory and statistics, the Conway–Maxwell–Poisson (CMP or COM–Poisson) distribution is a discrete probability distribution named after Richard W. Conway, William L. Maxwell, and Siméon Denis Poisson that generalizes the Poisson distribution by adding a parameter to model overdispersion and underdispersion.