Search results
Results from the WOW.Com Content Network
In mathematics, the moments of a function are certain quantitative measures related to the shape of the function's graph.If the function represents mass density, then the zeroth moment is the total mass, the first moment (normalized by total mass) is the center of mass, and the second moment is the moment of inertia.
Moments are usually defined with respect to a fixed reference point and refer to physical quantities located some distance from the reference point. For example, the moment of force, often called torque, is the product of a force on an object and the distance from the reference point to the object. In principle, any physical quantity can be ...
Example: Given the mean and variance (as well as all further cumulants equal 0) the normal distribution is the distribution solving the moment problem.. In mathematics, a moment problem arises as the result of trying to invert the mapping that takes a measure to the sequence of moments
In other words, a couple, unlike any more general moments, is a "free vector". (This fact is called Varignon's Second Moment Theorem.) [2] The proof of this claim is as follows: Suppose there are a set of force vectors F 1, F 2, etc. that form a couple, with position vectors (about some origin P), r 1, r 2, etc., respectively. The moment about P is
The moment of inertia of a body with the shape of the cross-section is the second moment of this area about the -axis perpendicular to the cross-section, weighted by its density. This is also called the polar moment of the area, and is the sum of the second moments about the - and -axes. [24]
Pages in category "Moment (mathematics)" The following 25 pages are in this category, out of 25 total. This list may not reflect recent changes. ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The essential difference between this and other well-known moment problems is that this is on a bounded interval, whereas in the Stieltjes moment problem one considers a half-line [0, ∞), and in the Hamburger moment problem one considers the whole line (−∞, ∞). The Stieltjes moment problems and the Hamburger moment problems, if they are ...