Search results
Results from the WOW.Com Content Network
Total dead space (also known as physiological dead space) is the sum of the anatomical dead space and the alveolar dead space. Benefits do accrue to a seemingly wasteful design for ventilation that includes dead space. [1] Carbon dioxide is retained, making a bicarbonate-buffered blood and interstitium possible.
The dead space can be determined from this curve by drawing a vertical line down the curve such that the areas below the curve (left of the line) and above the curve (right of the line) are equal. Most people with a normal distribution of airways resistances will reduce their expired end-tidal nitrogen concentrations to less than 2.5% within ...
An area with ventilation but no perfusion (and thus a V/Q undefined though approaching infinity) is termed "dead space". [6] Of note, few conditions constitute "pure" shunt or dead space as they would be incompatible with life, and thus the term V/Q mismatch is more appropriate for conditions in between these two extremes.
dead space Physiological dead space is the volume of ventilated gas that does not reach parts of the lung in which gas exchange occurs. [19] Breathing apparatus usually add some mechanical dead space to increase the total dead space of the system of breathing apparatus and user. demand valve
The Bohr equation, named after Danish physician Christian Bohr (1855–1911), describes the amount of physiological dead space in a person's lungs. This is given as a ratio of dead space to tidal volume. It differs from anatomical dead space as measured by Fowler's method as it includes alveolar dead space.
In medicine, the ratio of physiologic dead space over tidal volume (V D /V T) is a routine measurement, expressing the ratio of dead-space ventilation (V D) to tidal ventilation (V T), as in physiologic research or the care of patients with respiratory disease. [1]
The anatomy of the airways means inspired air must pass through the mouth, trachea, bronchi and bronchioles (anatomical dead space) before it gets to the alveoli where gas exchange will occur; on exhalation, alveolar gas must return along the same path, and so the exhaled sample will be purely alveolar only after a 500 to 1,000 ml of gas has ...
A pulmonary shunt is the passage of deoxygenated blood from the right side of the heart to the left without participation in gas exchange in the pulmonary capillaries. It is a pathological condition that results when the alveoli of parts of the lungs are perfused with blood as normal, but ventilation (the supply of air) fails to supply the perfused region.