Search results
Results from the WOW.Com Content Network
Memetic algorithm (MA), often called hybrid genetic algorithm among others, is a population-based method in which solutions are also subject to local improvement phases. The idea of memetic algorithms comes from memes , which unlike genes, can adapt themselves.
A genetic algorithm (GA) is an algorithm used to find approximate solutions to difficult-to-solve problems through application of the principles of evolutionary biology to computer science. Genetic algorithms use biologically-derived techniques such as inheritance , mutation , natural selection , and recombination .
Crossover in evolutionary algorithms and evolutionary computation, also called recombination, is a genetic operator used to combine the genetic information of two parents to generate new offspring. It is one way to stochastically generate new solutions from an existing population, and is analogous to the crossover that happens during sexual ...
Genetic Algorithm for Rule Set Production Scheduling applications , including job-shop scheduling and scheduling in printed circuit board assembly. [ 14 ] The objective being to schedule jobs in a sequence-dependent or non-sequence-dependent setup environment in order to maximize the volume of production while minimizing penalties such as ...
Mutation is a genetic operator used to maintain genetic diversity of the chromosomes of a population of an evolutionary algorithm (EA), including genetic algorithms in particular. It is analogous to biological mutation .
Selection is a genetic operator in an evolutionary algorithm (EA). An EA is a metaheuristic inspired by biological evolution and aims to solve challenging problems at least approximately . Selection has a dual purpose: on the one hand, it can choose individual genomes from a population for subsequent breeding (e.g., using the crossover operator ).
Genetic programming (GP) is an evolutionary algorithm, an artificial intelligence technique mimicking natural evolution, which operates on a population of programs. It applies the genetic operators selection according to a predefined fitness measure , mutation and crossover .
A chromosome or genotype in evolutionary algorithms (EA) is a set of parameters which define a proposed solution of the problem that the evolutionary algorithm is trying to solve. The set of all solutions, also called individuals according to the biological model, is known as the population .