enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function subject to equation constraints (i.e., subject to the condition that one or more equations have to be satisfied exactly by the chosen values of the variables). [1]

  3. Penalty method - Wikipedia

    en.wikipedia.org/wiki/Penalty_method

    In each iteration of the method, we increase the penalty coefficient (e.g. by a factor of 10), solve the unconstrained problem and use the solution as the initial guess for the next iteration. Solutions of the successive unconstrained problems will asymptotically converge to the solution of the original constrained problem.

  4. Dual linear program - Wikipedia

    en.wikipedia.org/wiki/Dual_linear_program

    Suppose we have the linear program: Maximize c T x subject to Ax ≤ b, x ≥ 0.. We would like to construct an upper bound on the solution. So we create a linear combination of the constraints, with positive coefficients, such that the coefficients of x in the constraints are at least c T.

  5. HiGHS optimization solver - Wikipedia

    en.wikipedia.org/wiki/HiGHS_optimization_solver

    The SciPy scientific library, for instance, uses HiGHS as its LP solver [13] from release 1.6.0 [14] and the HiGHS MIP solver for discrete optimization from release 1.9.0. [15] As well as offering an interface to HiGHS, the JuMP modelling language for Julia [ 16 ] also describes the specific use of HiGHS in its user documentation. [ 17 ]

  6. Big M method - Wikipedia

    en.wikipedia.org/wiki/Big_M_method

    Solve the problem using the usual simplex method. For example, x + y ≤ 100 becomes x + y + s 1 = 100, whilst x + y ≥ 100 becomes x + y − s 1 + a 1 = 100. The artificial variables must be shown to be 0. The function to be maximised is rewritten to include the sum of all the artificial variables.

  7. Interior-point method - Wikipedia

    en.wikipedia.org/wiki/Interior-point_method

    An interior point method was discovered by Soviet mathematician I. I. Dikin in 1967. [1] The method was reinvented in the U.S. in the mid-1980s. In 1984, Narendra Karmarkar developed a method for linear programming called Karmarkar's algorithm, [2] which runs in provably polynomial time (() operations on L-bit numbers, where n is the number of variables and constants), and is also very ...

  8. GOP Sen.-elect Curtis says he's not afraid to disagree with Trump

    www.aol.com/gop-sen-elect-curtis-says-150124170.html

    As a House member, John Curtis, R-Utah, exhibited a willingness to buck his own party. Now the senator-elect who is set to take the seat being vacated by retiring Mitt Romney, said he’s not ...

  9. Linear programming relaxation - Wikipedia

    en.wikipedia.org/wiki/Linear_programming_relaxation

    Two 0–1 integer programs that are equivalent, in that they have the same objective function and the same set of feasible solutions, may have quite different linear programming relaxations: a linear programming relaxation can be viewed geometrically, as a convex polytope that includes all feasible solutions and excludes all other 0–1 vectors ...