enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Completeness of the real numbers - Wikipedia

    en.wikipedia.org/wiki/Completeness_of_the_real...

    Dedekind completeness is the property that every Dedekind cut of the real numbers is generated by a real number. In a synthetic approach to the real numbers, this is the version of completeness that is most often included as an axiom. The rational number line Q is not Dedekind complete. An example is the Dedekind cut

  3. Completeness (order theory) - Wikipedia

    en.wikipedia.org/wiki/Completeness_(order_theory)

    In the mathematical area of order theory, completeness properties assert the existence of certain infima or suprema of a given partially ordered set (poset). The most familiar example is the completeness of the real numbers. A special use of the term refers to complete partial orders or complete lattices. However, many other interesting notions ...

  4. Least-upper-bound property - Wikipedia

    en.wikipedia.org/wiki/Least-upper-bound_property

    The least-upper-bound property is one form of the completeness axiom for the real numbers, and is sometimes referred to as Dedekind completeness. [2] It can be used to prove many of the fundamental results of real analysis , such as the intermediate value theorem , the Bolzano–Weierstrass theorem , the extreme value theorem , and the Heine ...

  5. Real number - Wikipedia

    en.wikipedia.org/wiki/Real_number

    The long real line pastes together ℵ 1 * + ℵ 1 copies of the real line plus a single point (here ℵ 1 * denotes the reversed ordering of ℵ 1) to create an ordered set that is "locally" identical to the real numbers, but somehow longer; for instance, there is an order-preserving embedding of ℵ 1 in the long real line but not in the real ...

  6. Construction of the real numbers - Wikipedia

    en.wikipedia.org/wiki/Construction_of_the_real...

    An axiomatic definition of the real numbers consists of defining them as the elements of a complete ordered field. [2] [3] [4] This means the following: The real numbers form a set, commonly denoted , containing two distinguished elements denoted 0 and 1, and on which are defined two binary operations and one binary relation; the operations are called addition and multiplication of real ...

  7. Dedekind–MacNeille completion - Wikipedia

    en.wikipedia.org/wiki/Dedekind–MacNeille...

    A complete lattice is a lattice in which every subset of elements of L has an infimum and supremum; this generalizes the analogous properties of the real numbers. An order-embedding is a function that maps distinct elements of S to distinct elements of L such that each pair of elements in S has the same ordering in L as they do in S .

  8. Infimum and supremum - Wikipedia

    en.wikipedia.org/wiki/Infimum_and_supremum

    The least-upper-bound property is an example of the aforementioned completeness properties which is typical for the set of real numbers. This property is sometimes called Dedekind completeness . If an ordered set S {\displaystyle S} has the property that every nonempty subset of S {\displaystyle S} having an upper bound also has a least upper ...

  9. Real analysis - Wikipedia

    en.wikipedia.org/wiki/Real_analysis

    This property distinguishes the real numbers from other ordered fields (e.g., the rational numbers ) and is critical to the proof of several key properties of functions of the real numbers. The completeness of the reals is often conveniently expressed as the least upper bound property (see below).