Search results
Results from the WOW.Com Content Network
More generally, one may define upper bound and least upper bound for any subset of a partially ordered set X, with “real number” replaced by “element of X ”. In this case, we say that X has the least-upper-bound property if every non-empty subset of X with an upper bound has a least upper bound in X.
The least-upper-bound property states that every nonempty subset of real numbers having an upper bound (or bounded above) must have a least upper bound (or supremum) in the set of real numbers. The rational number line Q does not have the least upper bound property. An example is the subset of rational numbers
There is a corresponding greatest-lower-bound property; an ordered set possesses the greatest-lower-bound property if and only if it also possesses the least-upper-bound property; the least-upper-bound of the set of lower bounds of a set is the greatest-lower-bound, and the greatest-lower-bound of the set of upper bounds of a set is the least ...
The seldom-considered dual notion to a dcpo is the filtered-complete poset. Dcpos with a least element ("pointed dcpos") are one of the possible meanings of the phrase complete partial order (cpo). If every subset that has some upper bound has also a least upper bound, then the respective poset is called bounded complete. The term is used ...
A partially ordered set in which any two elements have a unique supremum (least upper bound) and an infimum (greatest lower bound), used in various areas of mathematics and logic. Laver 1. Richard Laver 2. A Laver function is a function related to supercompact cardinals that takes ordinals to sets least upper bound
In particular, it satisfies a sort of least-upper-bound axiom that says, in effect: Every nonempty internal set that has an internal upper bound has a least internal upper bound. Countability of the set of all internal numbers (in conjunction with the fact that those form a densely ordered set) implies that that set does not satisfy the full ...
By the boundedness theorem, f is bounded from above, hence, by the Dedekind-completeness of the real numbers, the least upper bound (supremum) M of f exists. It is necessary to find a point d in [a, b] such that M = f(d). Let n be a natural number. As M is the least upper bound, M – 1/n is not an upper bound for f.
In mathematics, a complete Boolean algebra is a Boolean algebra in which every subset has a supremum (least upper bound).Complete Boolean algebras are used to construct Boolean-valued models of set theory in the theory of forcing.