enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    In numerical analysis, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function f is a number x such that f ( x ) = 0 . As, generally, the zeros of a function cannot be computed exactly nor expressed in closed form , root-finding algorithms provide approximations to zeros.

  3. ITP method - Wikipedia

    en.wikipedia.org/wiki/ITP_Method

    In numerical analysis, the ITP method, short for Interpolate Truncate and Project, is the first root-finding algorithm that achieves the superlinear convergence of the secant method [1] while retaining the optimal [2] worst-case performance of the bisection method. [3]

  4. Durand–Kerner method - Wikipedia

    en.wikipedia.org/wiki/Durand–Kerner_method

    In numerical analysis, the Weierstrass method or Durand–Kerner method, discovered by Karl Weierstrass in 1891 and rediscovered independently by Durand in 1960 and Kerner in 1966, is a root-finding algorithm for solving polynomial equations. [1]

  5. Sturm's theorem - Wikipedia

    en.wikipedia.org/wiki/Sturm's_theorem

    Download as PDF; Printable version ... root-finding algorithm for ... to which the algebraic number is a root, and an isolation interval. For example ...

  6. Bairstow's method - Wikipedia

    en.wikipedia.org/wiki/Bairstow's_method

    Bairstow's approach is to use Newton's method to adjust the coefficients u and v in the quadratic + + until its roots are also roots of the polynomial being solved. The roots of the quadratic may then be determined, and the polynomial may be divided by the quadratic to eliminate those roots.

  7. Lill's method - Wikipedia

    en.wikipedia.org/wiki/Lill's_method

    Finding roots of 3x 2 +5x−2. Lill's method can be used with Thales's theorem to find the real roots of a quadratic polynomial. In this example with 3x 2 +5x−2, the polynomial's line segments are first drawn in black, as above. A circle is drawn with the straight line segment joining the start and end points forming a diameter.

  8. Brent's method - Wikipedia

    en.wikipedia.org/wiki/Brent's_method

    Function minimization at minima.hpp with an example locating function minima. Root finding implements the newer TOMS748, a more modern and efficient algorithm than Brent's original, at TOMS748, and Boost.Math rooting finding that uses TOMS748 internally with examples. The Optim.jl package implements the algorithm in Julia (programming language)

  9. Ridders' method - Wikipedia

    en.wikipedia.org/wiki/Ridders'_method

    In numerical analysis, Ridders' method is a root-finding algorithm based on the false position method and the use of an exponential function to successively approximate a root of a continuous function (). The method is due to C. Ridders. [1] [2]