enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quadrature of the Parabola - Wikipedia

    en.wikipedia.org/wiki/Quadrature_of_the_Parabola

    Archimedes provides the first attested solution to this problem by focusing specifically on the area bounded by a parabola and a chord. [3] Archimedes gives two proofs of the main theorem: one using abstract mechanics and the other one by pure geometry. In the first proof, Archimedes considers a lever in equilibrium under the action of gravity ...

  3. The Method of Mechanical Theorems - Wikipedia

    en.wikipedia.org/wiki/The_Method_of_Mechanical...

    Archimedes' idea is to use the law of the lever to determine the areas of figures from the known center of mass of other figures. [1]: 8 The simplest example in modern language is the area of the parabola. A modern approach would be to find this area by calculating the integral

  4. Archimedes - Wikipedia

    en.wikipedia.org/wiki/Archimedes

    In Quadrature of the Parabola, Archimedes proved that the area enclosed by a parabola and a straight line is ⁠ 4 / 3 ⁠ times the area of a corresponding inscribed triangle as shown in the figure at right. He expressed the solution to the problem as an infinite geometric series with the common ratio ⁠ 1 / 4 ⁠:

  5. Calculus - Wikipedia

    en.wikipedia.org/wiki/Calculus

    Archimedes used the method of exhaustion to calculate the area under a parabola in his work Quadrature of the Parabola. Laying the foundations for integral calculus and foreshadowing the concept of the limit, ancient Greek mathematician Eudoxus of Cnidus ( c. 390–337 BC ) developed the method of exhaustion to prove the formulas for cone and ...

  6. Geometric series - Wikipedia

    en.wikipedia.org/wiki/Geometric_series

    Archimedes' theorem states that the total area under the parabola is 4/3 of the area of the blue triangle. His method was to dissect the area into infinite triangles as shown in the adjacent figure. [19] He determined that each green triangle has 1/8 the area of the blue triangle, each yellow triangle has 1/8 the area of a green triangle, and ...

  7. On the Equilibrium of Planes - Wikipedia

    en.wikipedia.org/wiki/On_the_Equilibrium_of_Planes

    Archimedes proves the next seven propositions by combining the concept of centre of gravity and the properties of the parabola with the results previously found in On the Equilibrium of Planes I. Specifically, he infers that two parabolas that are equal in area have their centre of gravity equidistant from some point, and later substitutes ...

  8. AOL Mail

    mail.aol.com/?icid=aol.com-nav

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Quadrature (geometry) - Wikipedia

    en.wikipedia.org/wiki/Quadrature_(geometry)

    The area of the surface of a sphere is equal to four times the area of the circle formed by a great circle of this sphere. The area of a segment of a parabola determined by a straight line cutting it is 4/3 the area of a triangle inscribed in this segment. For the proofs of these results, Archimedes used the method of exhaustion attributed to ...