enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Photoacoustic imaging - Wikipedia

    en.wikipedia.org/wiki/Photoacoustic_imaging

    An ultrasonic transducer with high central frequency and broader bandwidth are chosen to obtain high axial resolution. The lateral resolution is determined by the focal diameter of the transducer. For instance, a 50 MHz ultrasonic transducer provides 15 micrometre axial and 45 micrometre lateral resolution with ~3 mm imaging depth.

  3. Photoacoustic microscopy - Wikipedia

    en.wikipedia.org/wiki/Photoacoustic_microscopy

    The axial resolution of the system can be improved by using a wider bandwidth ultrasound transducer as long as the bandwidth matches that of the photoacoustic signal. The lateral resolution of photoacoustic microscopy depends on the optical and acoustic foci of the system.

  4. Super-resolution photoacoustic imaging - Wikipedia

    en.wikipedia.org/wiki/Super-resolution_photo...

    The lateral and axial resolutions were quantified to be ~141 nm and ~400 nm, respectively, which were about 2 and 75 times better than that of conventional PAM. [6] Figure 5: Comparison of lateral and axial resolution of conventional PAM and RS-PAM in imaging. [6]

  5. Doppler echocardiography - Wikipedia

    en.wikipedia.org/wiki/Doppler_echocardiography

    In ultrasound systems, lateral resolution is usually much lower than the axial resolution. The poor lateral resolution in the B-mode image also results in poor lateral resolution in flow estimation. Therefore, sub pixel resolution is needed to improve the accuracy of the estimation in the lateral dimension.

  6. Diffraction-limited system - Wikipedia

    en.wikipedia.org/wiki/Diffraction-limited_system

    In fluorescence microscopy the excitation and emission are typically on different wavelengths. In total internal reflection fluorescence microscopy a thin portion of the sample located immediately on the cover glass is excited with an evanescent field, and recorded with a conventional diffraction-limited objective, improving the axial resolution.

  7. Optical resolution - Wikipedia

    en.wikipedia.org/wiki/Optical_resolution

    The ability of a lens to resolve detail is usually determined by the quality of the lens, but is ultimately limited by diffraction.Light coming from a point source in the object diffracts through the lens aperture such that it forms a diffraction pattern in the image, which has a central spot and surrounding bright rings, separated by dark nulls; this pattern is known as an Airy pattern, and ...

  8. How astronomers used gravitational lensing to discover 44 new ...

    www.aol.com/news/astronomers-discovered-44-stars...

    The most powerful telescope to be launched into space has made history by detecting a record number of new stars in a distant galaxy. NASA's James Webb Space Telescope, history's largest and most ...

  9. Synthetic aperture ultrasound - Wikipedia

    en.wikipedia.org/wiki/Synthetic_Aperture_Ultrasound

    Synthetic aperture ultrasound (SAU) imaging is an advanced form of imaging technology used to form high-resolution images in biomedical ultrasound systems. Ultrasound imaging has become an important and popular medical imaging method, as it is safer and more economical than computer tomography (CT) and magnetic resonance imaging (MRI).