Search results
Results from the WOW.Com Content Network
Both NAD + and NADH strongly absorb ultraviolet light because of the adenine. For example, peak absorption of NAD + is at a wavelength of 259 nanometers (nm), with an extinction coefficient of 16,900 M −1 cm −1. NADH also absorbs at higher wavelengths, with a second peak in UV absorption at 339 nm with an extinction coefficient of 6,220 M ...
An example of a coupled reaction is the phosphorylation of fructose-6-phosphate to form the intermediate fructose-1,6-bisphosphate by the enzyme phosphofructokinase accompanied by the hydrolysis of ATP in the pathway of glycolysis. The resulting chemical reaction within the metabolic pathway is highly thermodynamically favorable and, as a ...
Out of the cytoplasm it goes into the Krebs cycle with the acetyl CoA. It then mixes with CO 2 and makes 2 ATP, NADH, and FADH. From there the NADH and FADH go into the NADH reductase, which produces the enzyme. The NADH pulls the enzyme's electrons to send through the electron transport chain. The electron transport chain pulls H + ions ...
[9] [10] Changing the form can have a large impact on other chemical properties. For example, FAD, the fully oxidized form is subject to nucleophilic attack, the fully reduced form, FADH 2 has high polarizability, while the half reduced form is unstable in aqueous solution. [11] FAD is an aromatic ring system, whereas FADH 2 is not. [12]
NADPH is the reduced form, whereas NADP + is the oxidized form. NADP + is used by all forms of cellular life. NADP + is essential for life because it is needed for cellular respiration. [3] NADP + differs from NAD + by the presence of an additional phosphate group on the 2' position of the ribose ring that carries the adenine moiety.
The cofactors NAD + and FAD are sometimes reduced during this process to form NADH and FADH 2, which drive the creation of ATP in other processes. [15] A molecule of NADH can produce 1.5–2.5 molecules of ATP, whereas a molecule of FADH 2 yields 1.5 molecules of ATP. [16]
The energy from the acetyl group, in the form of electrons, is used to reduce NAD+ and FAD to NADH and FADH 2, respectively. NADH and FADH 2 contain the stored energy harnessed from the initial glucose molecule and is used in the electron transport chain where the bulk of the ATP is produced. [1]
Thus, the two substrates of this enzyme are L-glutamate and NAD +, whereas its 4 products are L-glutamine, 2-oxoglutarate, NADH, and H +. This enzyme belongs to the family of oxidoreductases, specifically those acting on the CH-NH 2 group of donors with NAD + or NADP + as acceptor. This enzyme participates in glutamate metabolism and nitrogen ...