Search results
Results from the WOW.Com Content Network
Another approach is to not develop a theory of integration from scratch, but rather use the already available concept of integral of a real-valued function with respect to a non-negative measure. [3] To that end, it is a quick check that the real and imaginary parts μ 1 and μ 2 of a complex measure μ are finite-valued signed measures.
Countable additivity of a measure : The measure of a countable disjoint union is the same as the sum of all measures of each subset.. Let be a set and a σ-algebra over . A set function from to the extended real number line is called a measure if the following conditions hold:
The integral of a simple function is found by summing, over these (not necessarily connected) subsets of the domain, the product of the measure of the subset and its image under the simple function (the lower bound of the corresponding layer); intuitively, this product is the sum of the areas of all bars of the same height.
However, if we give X×Y the product measure such that the measure of a set is the sum of the Lebesgue measures of its horizontal sections, then the double integral of |f| is zero, but the two iterated integrals still have different values. This gives an example of a product measure where Fubini's theorem fails.
Measure and integration (as the English translation of the title reads) is a definitive monograph on integration and measure theory: the treatment of the limiting behavior of the integral of various kind of sequences of measure-related structures (measurable functions, measurable sets, measures and their combinations) is somewhat conclusive.
Lebesgue measure is both locally finite and inner regular, and so it is a Radon measure. Lebesgue measure is strictly positive on non-empty open sets, and so its support is the whole of R n. If A is a Lebesgue-measurable set with λ(A) = 0 (a null set), then every subset of A is also a null set. A fortiori, every subset of A is measurable.
The Lebesgue–Stieltjes measure is a regular Borel measure, and conversely every regular Borel measure on the real line is of this kind. Lebesgue–Stieltjes integrals , named for Henri Leon Lebesgue and Thomas Joannes Stieltjes , are also known as Lebesgue–Radon integrals or just Radon integrals , after Johann Radon , to whom much of the ...
A surface integral generalizes double integrals to integration over a surface (which may be a curved set in space); it can be thought of as the double integral analog of the line integral. The function to be integrated may be a scalar field or a vector field. The value of the surface integral is the sum of the field at all points on the surface.