enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Total order - Wikipedia

    en.wikipedia.org/wiki/Total_order

    A set equipped with a total order is a totally ordered set; [5] the terms simply ordered set, [2] linearly ordered set, [3] [5] and loset [6] [7] are also used. The term chain is sometimes defined as a synonym of totally ordered set, [5] but generally refers to a totally ordered subset of a given partially ordered set.

  3. List of order structures in mathematics - Wikipedia

    en.wikipedia.org/wiki/List_of_order_structures...

    In mathematics, and more specifically in order theory, several different types of ordered set have been studied. They include: Cyclic orders, orderings in which triples of elements are either clockwise or counterclockwise; Lattices, partial orders in which each pair of elements has a greatest lower bound and a least upper bound.

  4. Order topology - Wikipedia

    en.wikipedia.org/wiki/Order_topology

    In mathematics, an order topology is a specific topology that can be defined on any totally ordered set. It is a natural generalization of the topology of the real numbers to arbitrary totally ordered sets. If X is a totally ordered set, the order topology on X is generated by the subbase of "open rays" {<}

  5. Glossary of order theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_order_theory

    A chain is a totally ordered set or a totally ordered subset of a poset. See also total order. Chain complete. A partially ordered set in which every chain has a least upper bound. Closure operator. A closure operator on the poset P is a function C : P → P that is monotone, idempotent, and satisfies C(x) ≥ x for all x in P. Compact.

  6. Partially ordered set - Wikipedia

    en.wikipedia.org/wiki/Partially_ordered_set

    The real numbers, or in general any totally ordered set, ordered by the standard less-than-or-equal relation ≤, is a partial order. On the real numbers R {\displaystyle \mathbb {R} } , the usual less than relation < is a strict partial order.

  7. Order theory - Wikipedia

    en.wikipedia.org/wiki/Order_theory

    A set with a partial order on it is called a partially ordered set, poset, or just ordered set if the intended meaning is clear. By checking these properties, one immediately sees that the well-known orders on natural numbers , integers , rational numbers and reals are all orders in the above sense.

  8. Zorn's lemma - Wikipedia

    en.wikipedia.org/wiki/Zorn's_lemma

    An ordered set in which every pair of elements is comparable is called totally ordered. Every subset S of a partially ordered set P can itself be seen as partially ordered by restricting the order relation inherited from P to S. A subset S of a partially ordered set P is called a chain (in P) if it is totally ordered in the inherited order.

  9. Order type - Wikipedia

    en.wikipedia.org/wiki/Order_type

    The set of integers and the set of even integers have the same order type, because the mapping is a bijection that preserves the order. But the set of integers and the set of rational numbers (with the standard ordering) do not have the same order type, because even though the sets are of the same size (they are both countably infinite), there ...