Search results
Results from the WOW.Com Content Network
The specific orbital energy associated with this orbit is −29.6 MJ/kg: the potential energy is −59.2 MJ/kg, and the kinetic energy 29.6 MJ/kg. Compared with the potential energy at the surface, which is −62.6 MJ/kg., the extra potential energy is 3.4 MJ/kg, and the total extra energy is 33.0 MJ/kg.
the kinetic energy of the system is equal to the absolute value of the total energy; the potential energy of the system is equal to twice the total energy; The escape velocity from any distance is √ 2 times the speed in a circular orbit at that distance: the kinetic energy is twice as much, hence the total energy is zero. [citation needed]
If the orbit is elliptical or hyperbolic, then throughout the orbit kinetic and potential energy are exchanged; kinetic energy is greatest and potential energy lowest at closest approach to the earth or other massive body, while potential energy is greatest and kinetic energy the lowest at maximum distance. Disregarding loss or gain however ...
An elliptical orbit is depicted in the top-right quadrant of this diagram, where the gravitational potential well of the central mass shows potential energy, and the kinetic energy of the orbital speed is shown in red. The height of the kinetic energy decreases as the orbiting body's speed decreases and distance increases according to Kepler's ...
The specific energy (energy per unit mass) of any space vehicle is composed of two components, the specific potential energy and the specific kinetic energy. The specific potential energy associated with a planet of mass M is given by =
A related quantity is the specific orbital energy which is essentially the sum of the kinetic and potential energy divided by the mass. An object has reached escape velocity when the specific orbital energy is greater than or equal to zero.
If an orbit is about a planetary body with a significant atmosphere, its orbit can decay because of drag. Particularly at each periapsis, the object experiences atmospheric drag, losing energy. Each time, the orbit grows less eccentric (more circular) because the object loses kinetic energy precisely when that energy is at its maximum.
Given the total mass and the scalars r and v at a single point of the orbit, one can compute: . r and v at any other point in the orbit; and; the specific orbital energy, allowing an object orbiting a larger object to be classified as having not enough energy to remain in orbit, hence being "suborbital" (a ballistic missile, for example), having enough energy to be "orbital", but without the ...