enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Independence (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Independence_(probability...

    Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes.Two events are independent, statistically independent, or stochastically independent [1] if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds.

  3. Independent and identically distributed random variables

    en.wikipedia.org/wiki/Independent_and...

    A chart showing a uniform distribution. In probability theory and statistics, a collection of random variables is independent and identically distributed (i.i.d., iid, or IID) if each random variable has the same probability distribution as the others and all are mutually independent. [1]

  4. Probability distribution - Wikipedia

    en.wikipedia.org/wiki/Probability_distribution

    Probability function or probability measure: describes the probability () that the event , occurs. [ 11 ] Cumulative distribution function : function evaluating the probability that X {\displaystyle X} will take a value less than or equal to x {\displaystyle x} for a random variable (only for real-valued random variables).

  5. Pairwise independence - Wikipedia

    en.wikipedia.org/wiki/Pairwise_independence

    In probability theory, a pairwise independent collection of random variables is a set of random variables any two of which are independent. [1] Any collection of mutually independent random variables is pairwise independent, but some pairwise independent collections are not mutually independent.

  6. Law of the unconscious statistician - Wikipedia

    en.wikipedia.org/wiki/Law_of_the_unconscious...

    In probability theory and statistics, the law of the unconscious statistician, or LOTUS, is a theorem which expresses the expected value of a function g(X) of a random variable X in terms of g and the probability distribution of X. The form of the law depends on the type of random variable X in question.

  7. Notation in probability and statistics - Wikipedia

    en.wikipedia.org/wiki/Notation_in_probability...

    The probability is sometimes written to distinguish it from other functions and measure P to avoid having to define "P is a probability" and () is short for ({: ()}), where is the event space, is a random variable that is a function of (i.e., it depends upon ), and is some outcome of interest within the domain specified by (say, a particular ...

  8. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    This follows from the definition of independence in probability: the probabilities of two independent events happening, given a model, is the product of the probabilities. This is particularly important when the events are from independent and identically distributed random variables, such as independent observations or sampling with ...

  9. Conditional probability distribution - Wikipedia

    en.wikipedia.org/wiki/Conditional_probability...

    Seen as a function of for given , (= | =) is a probability mass function and so the sum over all (or integral if it is a conditional probability density) is 1. Seen as a function of x {\displaystyle x} for given y {\displaystyle y} , it is a likelihood function , so that the sum (or integral) over all x {\displaystyle x} need not be 1.