Search results
Results from the WOW.Com Content Network
Synthetic-aperture radar (SAR) is a form of radar which moves a real aperture or antenna through a series of positions along the objects to provide distinctive long-term coherent-signal variations. This can be used to obtain higher resolution.
Side-looking airborne radar (SLAR) is an aircraft, [1] or satellite-mounted imaging radar pointing perpendicular to the direction of flight (hence side-looking). [2] A squinted (nonperpendicular) mode is also possible. SLAR can be fitted with a standard antenna (real aperture radar) or an antenna using synthetic aperture.
Synthetic-aperture radar (SAR) is a form of radar that is used to create two-dimensional images or three-dimensional reconstructions of objects, such as landscapes. [1] SAR uses the motion of the radar antenna over a target region to provide finer spatial resolution than conventional stationary beam-scanning radars.
Aperture: The Antenna aperture of a radar sensor is real or synthetic. Real-beam radar sensors allow for real-time target sensing. Real-beam radar sensors allow for real-time target sensing. Synthetic aperture radar (SAR) allow for an angular resolution beyond real beamwidth by moving the aperture over the target, and adding the echoes coherently.
On 18 March 2008, Boeing, with ImSAR and Insitu successfully flight-tested a ScanEagle with ImSAR's NanoSAR A radar mounted aboard. The ImSAR NanoSAR is the world's smallest Synthetic Aperture Radar, weighs 3.5 lb (1.6 kg) [7] and is 100 cubic inches (1.6 litres) in volume. It is designed to provide high quality real-time ground imaging through ...
The NASA-ISRO Synthetic Aperture Radar (NISAR) mission is a joint project between NASA and ISRO to co-develop and launch a dual-frequency synthetic aperture radar on an Earth observation satellite in 2025. The satellite will be the first radar imaging satellite to use dual frequencies.
The radar is capable of producing extremely high resolution images at long range. ASARS-2 was used extensively during Operation Desert Storm for target location and battle damage assessment. It has also been used to survey damage after various domestic disasters, including floods along the Mississippi River and the 1994 Northridge earthquake .
The radar system required about 80 hours to collect one complete aperture of high-resolution, fully polarimetric data. Its peak power was at 500 kW with a pulse repetition frequency of 40 Hz, and the average transmitted power was about 20 mW. Creating the radar image required the railSAR to limit the Fourier processing to very small patches ...