Search results
Results from the WOW.Com Content Network
The importance in probability theory of "stability" and of the stable family of probability distributions is that they are "attractors" for properly normed sums of independent and identically distributed random variables. Important special cases of stable distributions are the normal distribution, the Cauchy distribution and the Lévy distribution.
The exponential of a Metzler (or quasipositive) matrix is a nonnegative matrix because of the corresponding property for the exponential of a nonnegative matrix. This is natural, once one observes that the generator matrices of continuous-time Markov chains are always Metzler matrices, and that probability distributions are always non-negative.
The Lyapunov equation, named after the Russian mathematician Aleksandr Lyapunov, is a matrix equation used in the stability analysis of linear dynamical systems. [1] [2]In particular, the discrete-time Lyapunov equation (also known as Stein equation) for is
The paradigmatic case is the stability of the origin under the linear autonomous differential equation ˙ = where = [] and is a 2-by-2 matrix. We would sometimes perform change-of-basis by X ′ = C X {\displaystyle X'=CX} for some invertible matrix C {\displaystyle C} , which gives X ˙ ′ = C − 1 A C X ′ {\displaystyle {\dot {X}}'=C^{-1 ...
The stable distribution family is also sometimes referred to as the Lévy alpha-stable distribution, after Paul Lévy, the first mathematician to have studied it. [ 1 ] [ 2 ] Of the four parameters defining the family, most attention has been focused on the stability parameter, α {\displaystyle \alpha } (see panel).
Von Neumann stability analysis is a commonly used procedure for the stability analysis of finite difference schemes as applied to linear partial differential equations. These results do not hold for nonlinear PDEs, where a general, consistent definition of stability is complicated by many properties absent in linear equations.
In the control system theory, the Routh–Hurwitz stability criterion is a mathematical test that is a necessary and sufficient condition for the stability of a linear time-invariant (LTI) dynamical system or control system. A stable system is one whose output signal is bounded; the position, velocity or energy do not increase to infinity as ...
A linear system is BIBO stable if its characteristic polynomial is stable. The denominator is required to be Hurwitz stable if the system is in continuous-time and Schur stable if it is in discrete-time. In practice, stability is determined by applying any one of several stability criteria.