enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Glycolysis - Wikipedia

    en.wikipedia.org/wiki/Glycolysis

    Glycolysis is the metabolic pathway that converts glucose (C 6 H 12 O 6) into pyruvate and, in most organisms, occurs in the liquid part of cells (the cytosol). The free energy released in this process is used to form the high-energy molecules adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide (NADH). [ 1 ]

  3. Insulin signal transduction pathway - Wikipedia

    en.wikipedia.org/wiki/Insulin_signal...

    The second phase is a slow release of newly formed vesicles that are triggered regardless of the blood sugar level. Glucose enters the beta cells and goes through glycolysis to form ATP that eventually causes depolarization of the beta cell membrane (as explained in Insulin secretion section of this article). The depolarization process causes ...

  4. Glucose 6-phosphate - Wikipedia

    en.wikipedia.org/wiki/Glucose_6-phosphate

    This dianion is very common in cells as the majority of glucose entering a cell will become phosphorylated in this way. Because of its prominent position in cellular chemistry, glucose 6-phosphate has many possible fates within the cell. It lies at the start of two major metabolic pathways: glycolysis and the pentose phosphate pathway.

  5. Glyceraldehyde 3-phosphate dehydrogenase - Wikipedia

    en.wikipedia.org/wiki/Glyceraldehyde_3-phosphate...

    All steps of glycolysis take place in the cytosol and so does the reaction catalysed by GAPDH. In red blood cells, GAPDH and several other glycolytic enzymes assemble in complexes on the inside of the cell membrane. The process appears to be regulated by phosphorylation and oxygenation. [29]

  6. Carbohydrate metabolism - Wikipedia

    en.wikipedia.org/wiki/Carbohydrate_metabolism

    Glycolysis can be regulated at different steps of the process through feedback regulation. The step that is regulated the most is the third step. This regulation is to ensure that the body is not over-producing pyruvate molecules. The regulation also allows for the storage of glucose molecules into fatty acids. [5]

  7. Malate–aspartate shuttle - Wikipedia

    en.wikipedia.org/wiki/Malate–aspartate_shuttle

    Illustration of the malate–aspartate shuttle pathway. The malate–aspartate shuttle (sometimes simply the malate shuttle) is a biochemical system for translocating electrons produced during glycolysis across the semipermeable inner membrane of the mitochondrion for oxidative phosphorylation in eukaryotes.

  8. Carbohydrate catabolism - Wikipedia

    en.wikipedia.org/wiki/Carbohydrate_catabolism

    The location where glycolysis, aerobic or anaerobic, occurs is in the cytosol of the cell. In glycolysis, a six-carbon glucose molecule is split into two three-carbon molecules called pyruvate. These carbon molecules are oxidized into NADH and ATP. For the glucose molecule to oxidize into pyruvate, an input of ATP molecules is required.

  9. Polyol pathway - Wikipedia

    en.wikipedia.org/wiki/Polyol_pathway

    The cells will use glucose for energy as normal, and any glucose not used for energy will enter the polyol pathway. When blood glucose is normal (about 100 mg/dL or 5.5 mmol/L), this interchange causes no problems, as aldose reductase has a low affinity for glucose at normal concentrations .