enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cubic crystal system - Wikipedia

    en.wikipedia.org/wiki/Cubic_crystal_system

    The plane of a face-centered cubic lattice is a hexagonal grid. ... [111] direction. In the caesium chloride structure, translation along the [111] direction results ...

  3. Slip (materials science) - Wikipedia

    en.wikipedia.org/wiki/Slip_(materials_science)

    Slip in face centered cubic (fcc) crystals occurs along the close packed plane. Specifically, the slip plane is of type , and the direction is of type < 1 10>. In the diagram on the right, the specific plane and direction are (111) and [1 10], respectively.

  4. Critical resolved shear stress - Wikipedia

    en.wikipedia.org/wiki/Critical_resolved_shear_stress

    In crystalline metals, slip occurs in specific directions on crystallographic planes, and each combination of slip direction and slip plane will have its own Schmid factor. As an example, for a face-centered cubic (FCC) system the primary slip plane is {111} and primary slip directions exist within the <110> permutation families.

  5. Crystal structure - Wikipedia

    en.wikipedia.org/wiki/Crystal_structure

    This type of structural arrangement is known as cubic close packing (ccp). The unit cell of a ccp arrangement of atoms is the face-centered cubic (fcc) unit cell. This is not immediately obvious as the closely packed layers are parallel to the {111} planes of the fcc unit cell. There are four different orientations of the close-packed layers.

  6. Miller index - Wikipedia

    en.wikipedia.org/wiki/Miller_index

    Indices in curly brackets or braces such as {100} denote a family of plane normals which are equivalent due to symmetry operations, much the way angle brackets denote a family of directions. For face-centered cubic and body-centered cubic lattices, the primitive lattice vectors are not

  7. Cross slip - Wikipedia

    en.wikipedia.org/wiki/Cross_Slip

    In face centered cubic (FCC) metals, screw dislocations can cross-slip from one {111} type plane to another. However, in FCC metals, pure screw dislocations dissociate into two mixed partial dislocations on a {111} plane, and the extended screw dislocation can only glide on the plane containing the two partial dislocations. [2]

  8. Stacking fault - Wikipedia

    en.wikipedia.org/wiki/Stacking_fault

    Face-centered cubic (fcc) structures differ from hexagonal close packed (hcp) structures only in stacking order: both structures have close-packed atomic planes with sixfold symmetry — the atoms form equilateral triangles. When stacking one of these layers on top of another, the atoms are not directly on top of one another.

  9. Close-packing of equal spheres - Wikipedia

    en.wikipedia.org/wiki/Close-packing_of_equal_spheres

    There are two simple regular lattices that achieve this highest average density. They are called face-centered cubic (FCC) (also called cubic close packed) and hexagonal close-packed (HCP), based on their symmetry. Both are based upon sheets of spheres arranged at the vertices of a triangular tiling; they differ in how the sheets are stacked ...