Search results
Results from the WOW.Com Content Network
The Earth's orbit approximates an ellipse. Eccentricity measures the departure of this ellipse from circularity. The shape of the Earth's orbit varies between nearly circular (theoretically the eccentricity can hit zero) and mildly elliptical (highest eccentricity was 0.0679 in the last 250 million years). [7] Its geometric or logarithmic mean ...
Orbital forcing is the effect on climate of slow changes in the tilt of the Earth's axis and shape of the Earth's orbit around the Sun (see Milankovitch cycles).These orbital changes modify the total amount of sunlight reaching the Earth by up to 25% at mid-latitudes (from 400 to 500 W/(m 2) at latitudes of 60 degrees).
The effect of obliquity variations may, in concert with precession, be amplified by orbital inclination. As the 100,000-year periodicity only dominates the climate of the past million years, there is insufficient information to separate the component frequencies of eccentricity using spectral analysis, making the reliable detection of significant longer-term trends more difficult, although the ...
Ignoring the influence of other Solar System bodies, Earth's orbit, also called Earth's revolution, is an ellipse with the Earth–Sun barycenter as one focus with a current eccentricity of 0.0167. Since this value is close to zero, the center of the orbit is relatively close to the center of the Sun (relative to the size of the orbit).
Apsidal precession is considered positive when the orbit's axis rotates in the same direction as the orbital motion. An apsidal period is the time interval required for an orbit to precess through 360°, [2] which takes the Earth about 112,000 years and the Moon about 8.85 years. [3]
An orbit will be Sun-synchronous when the precession rate ρ = dΩ / dt equals the mean motion of the Earth about the Sun n E, which is 360° per sidereal year (1.990 968 71 × 10 −7 rad/s), so we must set n E = ΔΩ E / T E = ρ = ΔΩ / T , where T E is the Earth orbital period, while T is the period of the spacecraft ...
[13] [14] Similarly, Earth has an effective temperature of 255 K (−18 °C; −1 °F), [14] but a surface temperature of about 288 K (15 °C; 59 °F) [15] due to the greenhouse effect in our lower atmosphere. [5] [4] The surface temperatures of such planets are more accurately estimated by modeling thermal radiation transport through the ...
The geologic temperature record are changes in Earth's environment as determined from geologic evidence on multi-million to billion (10 9) year time scales. The study of past temperatures provides an important paleoenvironmental insight because it is a component of the climate and oceanography of the time.