Search results
Results from the WOW.Com Content Network
K-distribution arises as the consequence of a statistical or probabilistic model used in synthetic-aperture radar (SAR) imagery. The K-distribution is formed by compounding two separate probability distributions, one representing the radar cross-section, and the other representing speckle that is a characteristic of coherent imaging.
In statistics, a Kaniadakis distribution (also known as κ-distribution) is a statistical distribution that emerges from the Kaniadakis statistics. [1] There are several families of Kaniadakis distributions related to different constraints used in the maximization of the Kaniadakis entropy, such as the κ-Exponential distribution, κ-Gaussian distribution, Kaniadakis κ-Gamma distribution and ...
The Erlang distribution is the distribution of the sum of k independent and identically distributed random variables, each having an exponential distribution. The long-run rate at which events occur is the reciprocal of the expectation of X , {\displaystyle X,} that is, λ / k . {\displaystyle \lambda /k.}
The uniform distribution or rectangular distribution on [a,b], where all points in a finite interval are equally likely, is a special case of the four-parameter Beta distribution. The Irwin–Hall distribution is the distribution of the sum of n independent random variables, each of which having the uniform distribution on [0,1].
The K-dimensional categorical distribution is the most general distribution over a K-way event; any other discrete distribution over a size-K sample space is a special case. The parameters specifying the probabilities of each possible outcome are constrained only by the fact that each must be in the range 0 to 1, and all must sum to 1.
Illustration of the Kolmogorov–Smirnov statistic. The red line is a model CDF, the blue line is an empirical CDF, and the black arrow is the KS statistic.. Kolmogorov–Smirnov test (K–S test or KS test) is a nonparametric test of the equality of continuous (or discontinuous, see Section 2.2), one-dimensional probability distributions that can be used to test whether a sample came from a ...
It is one example of a Kaniadakis κ-distribution. The κ-Gaussian distribution has been applied successfully for describing several complex systems in economy, [1] geophysics, [2] astrophysics, among many others. The κ-Gaussian distribution is a particular case of the κ-Generalized Gamma distribution. [3]
Theorem [7] — Suppose T is a distribution on U with compact support K and let V be an open subset of U containing K. Since every distribution with compact support has finite order, take N to be the order of T and define := {,, …, +}.