Search results
Results from the WOW.Com Content Network
Waves moving through water deeper than half their wavelength are known as deep-water waves. On the other hand, the orbits of water molecules in waves moving through shallow water are flattened by the proximity of the sea bottom surface. Waves in water shallower than 1/20 their original wavelength are known as shallow-water waves.
The water across the northern Atlantic Ocean becomes so dense that it begins to sink down through less salty and less dense water. (This open ocean convection is not unlike that of a lava lamp .) This downdraft of heavy, cold and dense water becomes a part of the North Atlantic Deep Water , a south-going stream.
Wind shear, sometimes referred to as wind gradient, is a difference in wind speed and direction over a relatively short distance in the Earth's atmosphere. [61] Wind shear can be broken down into vertical and horizontal components, with horizontal wind shear seen across weather fronts and near the coast, [62] and vertical shear typically near ...
The solar intensity decreases as the latitude increases, reaching essentially zero at the poles. Longitudinal circulation, however, is a result of the heat capacity of water, its absorptivity, and its mixing. Water absorbs more heat than does the land, but its temperature does not rise as greatly as does the land.
The only way to decrease the planetary vorticity is by moving the water parcel equatorward, so throughout the majority of subtropical gyres there is a weak equatorward flow. Harald Sverdrup quantified this phenomenon in his 1947 paper, "Wind Driven Currents in a Baroclinic Ocean", [6] in which the (depth-integrated) Sverdrup balance is defined ...
Breaking swell waves at Hermosa Beach, California. A swell, also sometimes referred to as ground swell, in the context of an ocean, sea or lake, is a series of mechanical waves that propagate along the interface between water and air under the predominating influence of gravity, and thus are often referred to as surface gravity waves.
Convection cells can form in any fluid, including the Earth's atmosphere (where they are called Hadley cells), boiling water, soup (where the cells can be identified by the particles they transport, such as grains of rice), the ocean, or the surface of the Sun. The size of convection cells is largely determined by the fluid's properties.
This results in a spiral of water moving down the water column. Then, it is the Coriolis forces that dictate which way the water will move; in the Northern hemisphere, the water is transported to the right of the direction of the wind. In the Southern Hemisphere, the water is transported to the left of the wind. [7] If this net movement of ...