Search results
Results from the WOW.Com Content Network
The relative permittivity of a medium is related to its electric susceptibility, χ e, as ε r (ω) = 1 + χ e. In anisotropic media (such as non cubic crystals) the relative permittivity is a second rank tensor. The relative permittivity of a material for a frequency of zero is known as its static relative permittivity.
The linear permittivity of a homogeneous material is usually given relative to that of free space, as a relative permittivity ε r (also called dielectric constant, although this term is deprecated and sometimes only refers to the static, zero-frequency relative permittivity).
Download as PDF; Printable version ... move to sidebar hide. Relative permittivities of some materials at room temperature under 1 kHz ... Relative permittivity table.
magnetostatics (ratio of the permeability of a specific medium to free space) Relative permittivity = electrostatics (ratio of capacitance of test capacitor with dielectric material versus vacuum) Specific gravity: SG (same as Relative density) Stefan number: Ste
The Lorentz–Lorenz equation is similar to the Clausius–Mossotti relation, except that it relates the refractive index (rather than the dielectric constant) of a substance to its polarizability. The Lorentz–Lorenz equation is named after the Danish mathematician and scientist Ludvig Lorenz , who published it in 1869, and the Dutch ...
The real (blue solid line) and imaginary (orange dashed line) components of relative permittivity are plotted for model with parameters = 3.2 eV, = 4.5 eV, = 100 eV, = 1 eV, and = 3.5. The Tauc–Lorentz model is a mathematical formula for the frequency dependence of the complex-valued relative permittivity , sometimes referred to as the ...
where ε 0 is the electric constant, ε r the relative static permittivity, and P is the polarization density. Substituting this form for D in the expression for displacement current, it has two components:
A similar parameter exists to relate the magnitude of the induced dipole moment p of an individual molecule to the local electric field E that induced the dipole. This parameter is the molecular polarizability (α), and the dipole moment resulting from the local electric field E local is given by: =