Search results
Results from the WOW.Com Content Network
The Hofmann rearrangement (Hofmann degradation) is the organic reaction of a primary amide to a primary amine with one less carbon atom. [1] [2] [3] The reaction involves oxidation of the nitrogen followed by rearrangement of the carbonyl and nitrogen to give an isocyanate intermediate.
Felix Hoffmann (21 January 1868 – 8 February 1946) was a German chemist notable for re-synthesising diamorphine (independently from C.R. Alder Wright who synthesized it 23 years earlier), which was popularized under the Bayer trade name of "heroin".
The carbylamine reaction (also known as the Hoffmann isocyanide synthesis) is the synthesis of an isocyanide by the reaction of a primary amine, chloroform, and base. The conversion involves the intermediacy of dichlorocarbene .
Thermolysis converts 1 to (E,E) geometric isomer 2, but 3 to (E,Z) isomer 4.. The Woodward–Hoffmann rules (or the pericyclic selection rules) [1] are a set of rules devised by Robert Burns Woodward and Roald Hoffmann to rationalize or predict certain aspects of the stereochemistry and activation energy of pericyclic reactions, an important class of reactions in organic chemistry.
The Fischer indole synthesis is a chemical reaction that produces the aromatic heterocycle indole from a (substituted) phenylhydrazine and an aldehyde or ketone under acidic conditions. [19] [20] The reaction was discovered in 1883 by Hermann Emil Fischer. The Fischer indole synthesis. The choice of acid catalyst is very important.
In the section "Calculations of yields in the monitoring of reactions" in the 1996 4th edition of Vogel's Textbook of Practical Organic Chemistry (1978), the authors write that, "theoretical yield in an organic reaction is the weight of product which would be obtained if the reaction has proceeded to completion according to the chemical ...
Computer-assisted organic synthesis software is a type of application software used in organic chemistry in tandem with computational chemistry to help facilitate the tasks of designing, predicting, and producing chemical reactions. CAOS aims to identify a series of chemical reactions which, from a starting compound, can produce a desired molecule.
They also did not have to use temperatures above 98 °C and avoided most of the explosive risk of the Staudenmeier–Hoffman–Hamdi method. The procedure starts with 100 g graphite and 50 g of sodium nitrate in 2.3 liters of sulfuric acid at 66 °C which is then cooled to 0 °C. 300 g of potassium permanganate is then added to the solution and ...