Search results
Results from the WOW.Com Content Network
Water can enter the cell by diffusion through the cell membrane or through selective membrane channels called aquaporins, which greatly facilitate the flow of water. [1] It occurs in a hypotonic environment, where water moves into the cell by osmosis and causes its volume to increase to the point where the volume exceeds the membrane's capacity ...
Free oxygen is produced in the biosphere through photolysis (light-driven oxidation and splitting) of water during photosynthesis in cyanobacteria, green algae, and plants. During oxidative phosphorylation in cellular respiration, oxygen is reduced to water, thus closing the biological water-oxygen redox cycle.
Aquaporins are "the plumbing system for cells". Water moves through cells in an organized way, most rapidly in tissues that have aquaporin water channels. [28] For many years, scientists assumed that water leaked through the cell membrane, and some water does. However, this did not explain how water could move so quickly through some cells. [28]
The biochemical capacity to use water as the source for electrons in photosynthesis evolved once, in a common ancestor of extant cyanobacteria (formerly called blue-green algae). The geological record indicates that this transforming event took place early in Earth's history, at least 2450–2320 million years ago (Ma), and, it is speculated ...
The electron transport chain of photosynthesis is often put in a diagram called the Z-scheme, because the redox diagram from P680 to P700 resembles the letter Z. [3] The final product of PSII is plastoquinol, a mobile electron carrier in the membrane. Plastoquinol transfers the electron from PSII to the proton pump, cytochrome b6f. The ultimate ...
A plant cell in hypotonic solution will absorb water by endosmosis, so that the increased volume of water in the cell will increase pressure, making the protoplasm push against the cell wall, a condition known as turgor. Turgor makes plant cells push against each other in the same way and is the main line method of support in non-woody plant ...
In some fish, capillary blood flows in the opposite direction to the water, causing countercurrent exchange. The muscles on the sides of the pharynx push the oxygen-depleted water out the gill openings. In bony fish, the pumping of oxygen-poor water is aided by a bone that surrounds the gills called the operculum. [6]
Water is lost much faster than CO 2 is absorbed, so plants need to replace it, and have developed systems to transport water from the moist soil to the site of photosynthesis. [33] Early plants sucked water between the walls of their cells, then evolved the ability to control water loss (and CO 2 acquisition) through the use of stomata ...