enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Standard temperature and pressure - Wikipedia

    en.wikipedia.org/wiki/Standard_temperature_and...

    The molar volume of gases around STP and at atmospheric pressure can be calculated with an accuracy that is usually sufficient by using the ideal gas law. The molar volume of any ideal gas may be calculated at various standard reference conditions as shown below: V m = 8.3145 × 273.15 / 101.325 = 22.414 dm 3 /mol at 0 °C and 101.325 kPa

  3. Standard state - Wikipedia

    en.wikipedia.org/wiki/Standard_state

    The standard state of a material (pure substance, mixture or solution) is a reference point used to calculate its properties under different conditions.A degree sign (°) or a superscript Plimsoll symbol (⦵) is used to designate a thermodynamic quantity in the standard state, such as change in enthalpy (ΔH°), change in entropy (ΔS°), or change in Gibbs free energy (ΔG°).

  4. Table of thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Table_of_thermodynamic...

    Quantity (common name/s) (Common) symbol/s Defining equation SI unit Dimension General heat/thermal capacity C = / J⋅K −1: ML 2 T −2 Θ −1: Heat capacity (isobaric)

  5. Ethanol (data page) - Wikipedia

    en.wikipedia.org/wiki/Ethanol_(data_page)

    Volume concentration, % Mass concentration, g/(100 ml) at 15.56 °C Density relative to 4 °C water Density at 20 °C relative to 20 °C water Density at 25 °C relative to 25 °C water Freezing temperature, °C 10 °C 20 °C 25 °C 30 °C

  6. Specific volume - Wikipedia

    en.wikipedia.org/wiki/Specific_volume

    For a substance X with a specific volume of 0.657 cm 3 /g and a substance Y with a specific volume 0.374 cm 3 /g, the density of each substance can be found by taking the inverse of the specific volume; therefore, substance X has a density of 1.522 g/cm 3 and substance Y has a density of 2.673 g/cm 3. With this information, the specific ...

  7. Molar volume - Wikipedia

    en.wikipedia.org/wiki/Molar_volume

    The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...

  8. Number density - Wikipedia

    en.wikipedia.org/wiki/Number_density

    Using the number density as a function of spatial coordinates, the total number of objects N in the entire volume V can be calculated as = (,,), where dV = dx dy dz is a volume element. If each object possesses the same mass m 0 , the total mass m of all the objects in the volume V can be expressed as m = ∭ V m 0 n ( x , y , z ) d V ...

  9. Methanol (data page) - Wikipedia

    en.wikipedia.org/wiki/Methanol_(data_page)

    Here is a similar formula from the 67th edition of the CRC handbook. Note that the form of this formula as given is a fit to the Clausius–Clapeyron equation, which is a good theoretical starting point for calculating saturation vapor pressures: log 10 (P) = −(0.05223)a/T + b, where P is in mmHg, T is in kelvins, a = 38324, and b = 8.8017.