enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Isotopes of potassium - Wikipedia

    en.wikipedia.org/wiki/Isotopes_of_potassium

    K decays with a half-life of 1.248×10 9 years. 89% of those decays are to stable 40 Ca by beta decay , whilst 11% are to 40 Ar by either electron capture or positron emission .

  3. K–Ar dating - Wikipedia

    en.wikipedia.org/wiki/K–Ar_dating

    K (0.0117%), 41 K (6.7302%). 39 K and 41 K are stable. The 40 K isotope is radioactive; it decays with a half-life of 1.248 × 10 9 years to 40 Ca and 40 Ar. Conversion to stable 40 Ca occurs via electron emission in 89.3% of decay events. Conversion to stable 40 Ar occurs via electron capture in the remaining 10.7% of decay events. [3]

  4. Potassium-40 - Wikipedia

    en.wikipedia.org/wiki/Potassium-40

    However, if the mineral contains any potassium, then decay of the 40 K isotope present will create fresh argon-40 that will remain locked up in the mineral. Since the rate at which this conversion occurs is known, it is possible to determine the elapsed time since the mineral formed by measuring the ratio of 40 K and 40 Ar atoms contained in it.

  5. Bateman equation - Wikipedia

    en.wikipedia.org/wiki/Bateman_equation

    In nuclear physics, the Bateman equation is a mathematical model describing abundances and activities in a decay chain as a function of time, based on the decay rates and initial abundances. The model was formulated by Ernest Rutherford in 1905 [ 1 ] and the analytical solution was provided by Harry Bateman in 1910.

  6. Deborah number - Wikipedia

    en.wikipedia.org/wiki/Deborah_number

    The Deborah number was originally proposed by Markus Reiner, a professor at Technion in Israel, who chose the name inspired by a verse in the Bible, stating "The mountains flowed before the Lord" in a song by the prophetess Deborah in the Book of Judges; [6] הָרִ֥ים נָזְל֖וּ מִפְּנֵ֣י יְהוָ֑ה hā-rîm nāzəlū mippənê Yahweh).

  7. Radioactive decay - Wikipedia

    en.wikipedia.org/wiki/Radioactive_decay

    In all of the above examples, the initial nuclide decays into just one product. [37] Consider the case of one initial nuclide that can decay into either of two products, that is A → B and A → C in parallel. For example, in a sample of potassium-40, 89.3% of the nuclei decay to calcium-40 and 10.7% to argon-40. We have for all time t:

  8. Celebrity Faces Show Alarming Effects Of Ozempic Use As ...

    www.aol.com/hollywood-faces-ozempic-face-crisis...

    Image credits: BACKGRID/VidaPress Dr. Rubinstein said of Katy: “Her cheeks do look thinner overall, and she certainly does look more angular and thinner. There is also less depth to her face.

  9. K–Ca dating - Wikipedia

    en.wikipedia.org/wiki/K–Ca_dating

    K decay leads to significantly greater 40 Ca enrichment than any other isotope. [8] The decay constant for the decay to 40 Ca is denoted as λ β and equals 4.962 × 10 −10 yr −1; the decay constant to 40 Ar is denoted as λ EC and equals 5.81 × 10 −11 yr −1. The general equation for the decay time of a radioactive nucleus that decays ...